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Almost everything is a complex system: Manhattan at rush hour of course,
but also, if you know how to look, a rock sitting in the middle of a field.
Excited by the heat of the midday sun, the molecules that make up the rock
are vibrating madly. Each is pulling at or shoving its neighbors, its parts
shifting around its center of mass in a most haphazard way, their next move
hinging on a multitude of minute details concerning the many atoms making
up the surrounding stone.

The rock and the city—what do they share that makes each in its own
way a paradigm of complexity? They are composed of many parts behaving
somewhat independently yet interacting strongly. That I take to be the es-
sential recipe for a complex system: sufficiently many parts, independent yet
interacting.

Complexity’s most salient consequence is intractability. Even supposing
that the behavior of every part of a complex system, and thus of the whole, is
entirely determined by the exact state of the parts and the fundamental laws
of nature, there is little hope of building scientific models capable of repre-
senting the system at this fineness of grain, thus little hope of predicting and
understanding the behavior of complex systems by tabulating the gyrations
of their parts.

You might therefore wonder whether sciences of complex systems are

possible. Complexity theory in its broadest sense is the body of work in



science, mathematics, and philosophy that aims to provide an affirmative
answer: to show how investigators inquire fruitfully into the workings of
complex systems and to understand why they so often succeed.

And they do succeed. Our present-day science does not cover everything,
but it covers a lot, and a lot of what’s covered is complex: rocks, gases, organ-
isms, ecosystems, economies, societies, languages, and minds. Evidently it is
possible sometimes to predict, sometimes to explain, sometimes to predict
and explain what is going on in a system without having to track the individual
histories of its many parts.

Complexity theory looks both retrospectively at the successes, attempting
to understand how they were achieved, and prospectively at possible future
successes, attempting to formulate ideas that will engender the next genera-
tion of discoveries in developmental genetics, economics and sociology, and
neuroscience.

This article will not discuss two important topics: attempts to define and
quantify complexity, and the concept of complexity in computer science and
mathematics. The latter I take to be outside my remit; as for the former,
I am not persuaded that it is a fruitful way to begin the study of complex
systems. I will therefore follow Weaver (1948) in relying on a rough and ready
characterization—complexity as a consequence of numerous independent
interacting parts—and a long list of examples from physics, biology, and the
social and behavioral sciences. Definitions are left to complexity theory’s

seventh day.’

1. Two Grand Questions

Complex systems exhibit, on a grand scale, two kinds of behavior that call out

for explanation: simplicity and sophistication. Sometimes it’s one; sometimes

1. For a good overview of attempts to define complexity, see Mitchell (2009), chap. 7.
Mitchell also mentions a survey suggesting that many complexity theorists believe that it is
too soon to attempt such a definition (p. 299).



it's the other; oftentimes, a mix of both at different levels.

I call a behavior simple if it conforms at least approximately to a gen-
eralization that can be simply expressed—if, for example, it obeys a “law”
containing just a few variables, as most gases roughly obey the ideal gas law
PV = kT, or most organisms obey Kleiber’s law according to which metabolic
rate increases in proportion to the 3/4 power of body mass.

The simplicity in a complex system typically does not exist at the level of
the many interacting parts that make for its complexity—at what I will call
the system’s microlevel. The reason is this: to track a complex system at the
microlevel, you need sets of equations that for each small part describe its
state and prescribe its interactions with the other parts. There is nothing at all
simple about such a model. Simplicity in complex systems emerges rather at
higher levels of description—at a macrolevel where variables or other terms
in the simple description represent aggregate properties of many or all of
the microlevel parts, as a gas’s temperature represents its molecules’ average
kinetic energy or an organism’s mass represents the total mass of all its cells
and other physiological constituents.

The first grand question about complex systems, then, is of how macrosim-
plicity emerges (when it does) from microcomplexity, of how simplicity in the
behavior of the system as a whole is sustained and explained by the convoluted
action of the system’s fundamental-level constituents.

Consider, for example, gases. Their low-level convolution is typically
for all practical purposes intractable. We do not have the mental fortitude
or the computational power to track the behavior of every one of even a
small quantity of gas’s heptillions of molecules, each colliding with the others
billions of times a second. If that were what it took to build a science of gases,
it would be beyond our reach.

Happily, there is another possibility. At the macrolevel, the behavior of the
same quantity of gas can be characterized by a simple linear function of three

variables—the ideal gas equation. The equation is no good for predicting the



trajectories of individual molecules, but we are not much interested in that.
Predicting changes in temperature, pressure and volume is good enough for
many purposes—good enough to provide a starting point for a science of
gases that rises above the intractability of the behavior of the gases’ many
parts.

The simple behavior of gases and many other complex systems is not only
good for complex-system scientists, but essential for the rest of us. Gases’
macrolevel simplicity means macrolevel stability: the air in a room tends to
remain uniformly distributed throughout the available space, rather than surg-
ing to and fro from corner to corner.” So we can all keep breathing with a min-
imum of fuss. Numerous other stable behaviors of our environment—both
its resources and its inhabitants—also play a critical role in making our con-
tinued existence possible. Macrolevel simplicity in the things around us is not
sufficient for life, but it is essential.

Many complex systems behave in striking ways that go far beyond the sim-
plicity that provides a stable background for life to flourish: they exhibit what
I will call sophistication. That label embraces many things: the orchestration of
biological development, in which an elaborately structured, highly functional
organism is built from a single cell; the organism’s subsequent exploitation
of its habitat; the operations of the minds of intelligent organisms directing
the exploitation; and much more. Frequently, the sophisticated behavior of
such systems is evident in the kind of plasticity that we call goal-directed. But
there are other varieties of sophistication, to be considered in due course.

The second grand question about complex systems, then, is how sophisti-
cated behavior emerges from the interaction of relatively simplistic parts. Both
grand questions are posed by the appearance of something at the macrolevel

that appears to belie what is at the microlevel: simplicity or stability from

2. Simplicity in the sense of compact describability does not guarantee stability—as chaos
theory shows, simple laws can generate behavior that looks to us to be highly erratic—but
the two go together often enough (and wherever there is stability, there is more or less by
definition simplicity).



the convoluted interaction of parts; sophistication from the interaction of
simplistic or simply behaving parts.” The emergence of simplicity makes
complex-system science possible, by creating behaviors that scientists can
reasonably hope to capture in a generalization or a model. The emergence of
sophistication makes complex-system science interesting; indeed, essential.

The two varieties of emergence may, and often do, coexist. Inside a nerve
cell’'s axon, a great horde of molecules bounces this way and that, the trajectory
of each irregular enough to seem utterly random. But the movements of these
molecules taken as a whole are regular enough that the cell exhibits a fairly
simple, fairly stable behavior: upon receiving the right stimulus, a wave of
electric charge runs up the axon. Examined at the microlevel, this wave
consists in the individually unpredictable movements of vast numbers of
charge-carrying ions; in the aggregate, however, these movements add up
to the reliable, predictable pulses by which information is transmitted long
distances through the body and brain. The building blocks of thought, in
particular, are in large part these simple behaviors that emerge from the
convoluted molecular chaos of the cell.

Yet thought itself is not simple; it is sophisticated. Somehow, the relatively
simplistic mechanics of individual neurons are, when harnessed together
in a brain, capable of producing behavior that is purposive, intelligent, even
rational. From the simple but numerous interactions between molecules, then,
comes the convoluted behavior of axonal ions; from this convolution comes a
higher-level simplicity at the cellular level; and from the interactions between
neurons behaving relatively simply, something extraordinarily sophisticated

from the assembly that is the brain.

3. The second question concerns a kind of complexity emerging from a kind of simplicity;
the first question, a slightly different kind of simplicity emerging from a completely different
kind of complexity. I keep the two complexities well apart, hence my different names for the
two kinds of complex behavior: sophistication and convolution. Simplicity in the sense of a
dynamics’ compact describability is not quite the same thing as simplicity in the sense of a
dynamics’ lack of sophistication, but the two are close enough that it seems unnecessarily
pedantic to encode the difference in separate terms—hence I use simplicity for both.



The same complementary arrangement of simplicity from convolution
and sophistication from simplicity is found in the balance of life in a mature
ecosystem. Individual organisms, especially animals, interacting with each
other and with their environments can be as haphazard and unpredictable in
their movements as colliding molecules. The intersecting life trajectories of
such organisms, then, make for a highly convoluted whole.

Within such a whole, however, simple high-level patterns emerge. The
success of ecological modeling using equations tracking only aggregate popu-
lations suggests that the convolutions in individual lives add up to stable rates
of reproduction, predation, and death. While it may be eftectively impossible
to predict whether an individual hare will get eaten in the course of a month,
it is relatively easy to predict the rate at which hares in general will get them-
selves eaten: it seems to depend on only a few high-level variables, such as the
number of predators in the ecosystem. From convolution, simplicity emerges.

This simplicity in turn gives rise to sophistication: the regularity in rates
of birth and death is what makes for stable evolutionary fitness in a trait—for
the fact that possession of a trait can result in a determinate increase in the
rate of reproduction, in viability, and so on—and thus makes it possible for
natural selection to operate with a certain consistency over time periods long
enough to result in evolution and adaptation. The adaptedness of things is of
course a kind of sophistication, surely the most important kind that we have
yet explained.

This essay is organized around the two grand questions, focusing on
attempts to provide answers to those questions of the widest possible scope,
that is “theories of complexity” that attempt to give very general conditions
for simplicity’s emergence from convolution and sophistication’s emergence
from simplicity.

Notions such as explanation and emergence can become themselves a
topic of debate in these endeavors, but I have put such arguments to one side,

as they are covered by separate entries in this handbook.



2. From Convolution to Simplicity

In a convoluted complex system it is almost impossible to model, and so
to predict, the movements (or other changes in state) of one of the system’s
parts—the trajectory of a gas molecule, a lynx’s success in hunting rabbits,
a soldier’s fate on the field of battle. In some cases the chaos is replicated at
the macrolevel: might the outcome of the Battle of Waterloo have hinged on
any of a number of small-scale deployments or split-second decisions? But
often enough, the macrolevel is a sea of mathematical calm: somehow the
aggregate properties of the parts are stable or predictable even though the

parts themselves are not. How can that be?

2.1 The Sources of Convolution

Let me begin by saying something about the sources of microlevel convolution

or unpredictability. I see three:

1. Convolution of the parts: In some cases, the internals of the individ-
ual parts of a complex system are convoluted, and so any given part’s

behavior is difficult to predict.

2. Chaos: The dynamics of the strong interactions between parts is often
sensitive to initial conditions (that is, in a loose sense “chaotic”). Small
differences in the states of individual parts can make for big differences
in the outcomes of their encounters. These big differences then stand

to make still bigger differences down the road.

3. Combinatorial escalation: There are many parts in a single system. To
keep track of these parts is difficult enough under any circumstances; if
their individual behaviors are hard to predict (convolution of the parts)
or their interactions depend on small details of their states (chaos), then

the complexity of the task is multiplied beyond practical feasibility.



The emergence of some kinds of macrolevel simplicity under these con-
ditions is easy to understand. The weight of a gas at a given time is a simple
function of the weight of its constituent molecules; the strong interactions
between these molecules, and the ensuing chaos and combinatorial escalation,
is simply irrelevant to the determination of weight. (This example is a useful
reminder that any complex system has many macrolevel properties. Some
may behave simply; some more complexly. Of the simple behaviors, some
may be easily explained; some not.)

Most macrolevel properties, however, are not like weight. A confined
gas’s pressure is constituted by the drumming of its many molecules on its
container’s walls; the force exerted by the molecules depends on their position
and velocity, which is determined in turn by the other molecules with which
they collide, a process that can be characterized fully only by a stupendous
array of equations. The changes in the population of some organism depend
on individual births and deaths, events likewise dictated by a microlevel
dynamics so complex that it will never be written down.

In these cases, unlike the case of weight, the microlevel dynamics drives
most or all of the changes in the macrolevel properties, yet the resulting
macrolevel dynamics is as simple as the microlevel dynamics is convoluted.
The convolution of the microlevel is suppressed or dissolved without in any
way undercutting the microlevel’s causal role. The problem is to understand

this suppression, this dissolution.

2.2 Modularity and Near-Decomposability

Some complex systems have a hierarchical or modular structure, Simon
(1996) influentially argues: small groups of parts make up larger assemblies—
“modules’, if you like—from which the whole is built (or from which higher-
level modules are built). The parts of a module interact strongly, as they
must if the system is to be considered complex at all, but because of the

modular structure these interactions are felt only weakly if at all outside the



module. In a completely “decomposable” system, they are not felt at all. The
effects of a module part do not pass through the module’s boundaries; as a
consequence—since a module consists of nothing but its parts—each module
is utterly self-contained, a little universe doing its own thing independently
of the others. Complete causal independence of this sort is rare, and is in any
case hardly a hallmark of complexity. Far more common, Simon observes, is
what he calls “near-decomposability”: interactions between modules are far
weaker in some sense than interactions within modules.

Such near-decomposability can ensure a relatively simple, relatively stable,
relatively tractable behavior of the ensemble of modules—of the system as
a whole. Simon makes the case, in particular, for systems in which the in-
teraction between modules happens on a much longer time scale than the
interaction within modules. The effect of a particular module part, difficult to
predict perhaps because of its internal convolutions or because of its strong
interactions with the other parts of the same module, will percolate only very
slowly from one module to another; consequently, he argued, the effect of
one module on another will be dictated not by individual effects but by their
long-run average. If this average is stable or has a simple dynamics, then
the same should be true for the dynamics of intermodular interactions—in
spite of the large number of strongly interacting parts of which the modules
are composed. The relatively simple dynamics of intermodular interaction,
Simon believed, provided a basis for stability in the system’s overall macrolevel
behavior—a stability that could be exploited by selection, natural or otherwise,
to create sophistication on top of simplicity.*

Near-decomposability and the related notion of modularity, though they
have remained important in the study of evolvability (section 2.5) and in evolu-

tionary developmental biology (section 3.3), are not enough in themselves to

4. See Strevens (2005) for a more detailed account of the decomposition strategy, and
Bechtel and Richardson| (1993) for “decomposition” as a research strategy for understanding
complex systems.



explain the emergence of macrolevel simplicity from microlevel convolution.
First, such emergence occurs even in systems that have no hierarchical organi-
zation to confine the influence of the parts to a single locale; examples include
gases, many ecosystems, and some social structures. Second, the appeal to
near-decomposability explains macrolevel simplicity only if the behavior of
individual modules is, in the aggregate or in the long run, simple. But the
parts of many modules are sufficiently numerous to produce convolution
even within the module; how, then, is the necessary modular simplicity to be

explained?

2.3 The Statistical Approach

The first great formal theories of complex systems were those of statistical
physics: first, kinetic theory (Maxwell 1860, 1867; Boltzmann 1964), and then
the more general apparatus of statistical mechanics (Gibbs 1902; Tolman
1938). For many complexity theorists writing in the wake of the development
of statistical physics, it was natural to apply the same statistical methods
to ecosystems (Lotka 1925), to “disorganized” complex systems in general
(Weaver 1948), and even to an imagined social science capable of predicting
the future history of the galaxy (Asimov’s Foundation trilogy).

Consider again a gas in a box. The statistical approach, in the version
represented by kinetic theory, stipulates a physical probability distribution
over the position and velocity of each molecule in the gas. In the simplest case,
the distribution is the Maxwell-Boltzmann distribution, which specifies that a
molecule is equally likely to be found in any part of the box while imposing a
Gaussian (normal) distribution over the components of the molecule’s velocity
that depends only on the temperature of the gas and the mass of the molecule.

The distributions for different molecules are stochastically independent,
from which certain conclusions follow immediately by way of the law of large
numbers (for the same reason that, from the probability of one-half that a

tossed coin lands heads, it follows that a large number of coin tosses will,
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with very high probability, produce about one-half heads). The distribution
over position implies that the gas is at any time almost certainly distributed
evenly throughout the box. The distribution over velocity implies that, if
the gas is warmed, the pressure it exerts on the container walls will increase
proportionately (Gay-Lussac’s law): an increase in temperature results in a
proportional increase in average molecular velocity, which almost certainly
results in a proportional increase in the force exerted on average against the
container walls—that is, an increase in pressure. The probability distributions
over microlevel properties, then—over the positions and velocities of indi-
vidual molecules—can be used to explain stabilities or simplicities in a gas’s
macrolevel properties, such as its temperature and pressure.

A direct generalization of the statistical approach in kinetic theory explains

the simple behavior of convoluted systems in three steps:

1. Probability distributions are placed over the relevant behaviors of a com-
plex system’s parts: over the positions of gas molecules, over the deaths
of organisms, over decisions to vote for a certain electoral candidate,

and so on.

2. The distributions are combined, in accordance with the law of large
numbers, to derive a probability distribution over the behavior of ag-
gregate properties of the parts: the distribution of a gas; the death rate

of a certain kind of organism; the results of an election; and so on.

3. From this distribution, a simple macrolevel dynamics or prediction is

derived.

This schematic approach is what Strevens (2003, 2005) calls enion probability
analysis, or EPA for short.

Let me elaborate on the assumptions and machinery of Epa. First, the
parts of a system over whose states or behaviors the probability distributions
range are called enions; this distinguishes them from other parts of the system

(say, the distribution of vegetation in or the topography of an ecosystem) that
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are excluded from the analysis—their states either being held fixed or having
their variation determined exogenously.

Second, the outcomes over which the enion probability distributions range
are those that contribute to the macrolevel aggregates that are under investi-
gation. If you are investigating death rates, you need probability distributions
over death. If you are investigating the spatial distribution of a gas, you need
probability distributions over molecules’ positions. By the same token, no
probability distribution need be imposed over outcomes that are not relevant
to the aggregates.

Third, the enion probability distributions—the probabilities assigned to
enion states or behaviors, such as position or death—should depend only
on macrolevel properties of the system. The probability of a hare’s death, for
example, should depend only on the total number of lynxes in the local habitat,
and not on the positions of particular lynxes. The reason is this: any variable
on which the probabilities depend will tend to find its way into the probability
distributions over the macrolevel properties in step (2). If the probability of
a certain hare’s death depends, for example, on the positions of particular
lynxes, then the death rate as a whole will, if mathematically derived from
this distribution, in most circumstances depend on the positions of particular
lynxes. But then the macrolevel dynamics derived in step (3) will depend on
these microlevel variables, and so will not be a simple dynamics.”

Fourth, the enion probability distributions should be stochastically inde-
pendent. One hare’s death by predation should, for example, be left unchanged
by conditionalizing on another hare’s death by predation, just as one coin
toss’s landing heads makes no difference to the probability that the next toss

also lands heads. It is this assumption that allows you to pass, by way of the

5. Itis not inevitable that microlevel variables will end up in the macrolevel dynamics:
there might be some further mathematical technique by which they can be removed, or
perhaps aggregated (so that the death rate depends only on the distribution of lynxes). The
same goes for all the strictures in this discussion: any general problem might have a tailor-
made solution in some particular case.
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law of large numbers, from a probability to a matching long-run frequency—
inferring from (say) a 5% probability that any particular hare is eaten in a
month that there is a high probability that, over the course of a month, about
5% of a large population of hares will be eaten.

Fifth, as the immediately preceding example suggests, the use of the law
of large numbers will tend to give you—provided that each mathematically
distinct enion probability distribution is shared by large numbers of enions—
probabilities for macrolevel states or behaviors that are close to one. From
these probabilities, then, you can derive something that looks much like a
definite prediction or a deterministic macrolevel dynamics, with the proviso
that there is some chance of deviation. The chance is negligible in the case of
a gas with its vast numbers of molecules, but rather more noticeable in the
case of hares (though in the ecological case, there are many other sources of
deviance; the assumption that outcomes are independent, for example, holds
only approximately).

When the suppositions just enumerated hold, macrolevel simplicity emerges
from microlevel convolution. The population dynamics of a lynx/hare ecosys-
tem, for example, can be represented by a relatively simple equation; in the
best case, a Lotka-Volterra equation containing little more than variables rep-
resenting the populations of the two species and parameters (derived from the
enion probability distributions) representing rates of reproduction, predation,
and so on.

Where does all the convolution go? The population of hares depends on
the births and deaths of individual hares, which depend in turn on minute
details in position and configuration: whether or not a hare is eaten might
hinge on just a few degrees in the angle that a particular lynx’s head makes to
its body at a particular time. Why is the dependence not passed up the chain?

The answer is that, in the aggregate, these dependences manifest them-
selves in fluctuations that cancel each other out. The outcome of a tossed

coin depends sensitively on the speed with which it is spun: a little faster
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and it would have been tails rather than heads. These dependences push
the outcomes of coin tosses this way and that, more or less at random. But
precisely because of this randomness, they ultimately make little difference to
the frequency of heads. There are as many “nudges” in one direction as in any
other; consequently, the nudges more or less balance, leaving the frequency
of heads to be determined by fixed, underlying features of the coin’s material
makeup.

The same holds, very broadly, in the ecosystem: an individual hare’s life
turns on a few small details, but for a system of many hares, these details
more or less balance, leaving the rate of hare death to be determined by fixed,
underlying features of the ecosystem: hare camouflage, lynx eyesight, ground
cover, and of course the overall number of lynxes in the environs. The system’s
behavior can therefore be characterized by equations representing, explicitly
or implicitly, this fixed background and the handful of variable properties.

Enion probability analysis is applicable to a wide variety of complex sys-
tems and processes: the systems of statistical physics (and therefore, of physical
chemistry); ecosystems (as Lotka hoped) and therefore evolution by both
natural selection and genetic drift; various aspects of human societies and
economies, such as traffic flow along the highways and through the internet’s
tubes. Much of the simplicity and stability we see around us can be accounted

for in this way. But there is more.

2.4 Abstract Difference-Making Structures

The statistical approach to explaining the simplicity of macrolevel behavior—
what I call enion probability analysis—can be understood as a demonstration
that the incredibly intricate and involved to-ings and fro-ings of a system’s
microlevel parts make no difference to its macrolevel behavior: they are fluc-
tuations that, because of their statistical profile, cancel out, leaving macrolevel
states and changes in state to be determined by relatively stable and measurable

features such as molecular mass, lynx physiology, and so on.
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Other methods explaining the emergence of macrosimplicity may be
viewed in the same way: they show that certain elements of a system, elements
that contribute significantly to its convoluted microlevel dynamics, make no
difference to the behavior of its high-level properties, though these properties
may themselves be aggregates of the very elements that are seen to make no
difference. These methods, including Epa, thus identify certain rather abstract
properties of the system in question—abstract in the sense that they may be
shared by systems that in many other respects differ significantly—and they
show that the abstract properties alone are difference-makers for high-level
behavior. A system with those properties will exhibit that behavior, regardless
of how the properties are realized.’

Boltzmann’s kinetic theory, for example, uses an implementation of Epa
to show that the physical differences between the geometry of different gas
molecules make no difference to gases’ tendency to move toward equilibrium,
and thus to conform to the second law of thermodynamics: all that matters is
that, upon colliding, the molecules in a certain sense scatter. This scattering
character of collisions is the difference-making property that, however it is
realized, secures equilibration.

The simplicity of the equilibration dynamics is, I suggest, closely connected
to the abstractness of the difference-making property. The connection is not
straightforward or directly proportional, but there is a correlation: where you
find simplicity, you tend to find abstract difference-makers.

As a consequence, macrosimplicity also goes along with universality:
where one complex system behaves in a simple way, many others, often quite
different in their constitution, also tend to behave in that same simple way.
Looking beyond Epa, then—though the connection holds there, too—the

same techniques that explain macrosimplicity tend also to explain universality,

6. This is not identical, though it is close, to the notion of difference-making that I have
developed in my work on scientific explanation (Strevens 2008). This essay does not require,
I think, a formal characterization.
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in both cases by identifying a highly abstract difference-making structure
sufficient, or nearly so, for the phenomenon in question.

Let me give three examples.

Critical Point Phenomena A wide variety of complex systems, when their
temperature crosses a certain point, undergo phase transitions in which the
macrostate of the system changes qualitatively: liquids freeze; unmagnetized
solids become magnetized; disordered rod-like molecules align (Yeomans
1992). For what are called continuous phase transitions, the systems’ behav-
ior near the point of transformation—the critical temperature—is strikingly
similar: certain physical quantities, such as magnetization, conform to an
equation of the form

F(T) < (T-T,)"

where T is the system’s temperature (or other relevant variable), F(T) is
the value at temperature T of the physical quantity in question (such as
magnetization), T, is the critical temperature, and « is an exponent that takes
the same value for large classes of systems that otherwise differ greatly in their
constitution.

Two things to note: first, these are complex systems with enormous num-
bers of degrees of freedom, yet their macrolevel behavior near the critical
temperature is extremely simple; second, there is great universality to this
behavior, with many dissimilar systems following the same equation in the
critical zone. The explanation of this simplicity and universality consists in a
demonstration that almost everything about such systems makes no differ-
ence to their behavior in the critical zone; what matters is that they have a
certain abstract structure, shared by some simple models used to study critical

behavior, such as the Ising model.”

7. Wilson (1979) gives an accessible yet satisfying account of critical point universality,
written by the physicist who won the Nobel prize for its explanation. For a philosophical
treatment, see Batterman (2002).
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The Neutral Theory of Biodiversity ~Certain features of certain complex
ecosystems (such as tropical forests) appear to be the same regardless of the
species that constitute the system. One such feature is the distribution of
species abundance, that is, the relative numbers of the most abundant species,
the second most abundant species, and so on down to the rarest species.

The neutral theory of biodiversity explains the universality of these features
using models of ecological dynamics that make no distinction among species,
and that do not take into account, in particular, the degree of adaptedness of
the species to the environment. It is shown that in the models, the observed
abundance curve obtains, and it is claimed that real ecosystems conform to the
curve for the same reason (Hubbell 2001). If that is correct, then the patterns
of abundance in real ecosystems owe nothing to the fitness of the species in
the system, but are instead explained as a matter of chance: some species are
more plentiful merely because, to put it very simply, they happened to come
along at the right time, and so managed to establish a decisive presence in the

system.

The Topology of the World Wide Web  Patterns of linkage in the World
Wide Web have, it seems, a certain topology wherever you look: the probability
P(n) that a given web site has n incoming links from other sites falls off as n

increases, following a power law
P(n) ccn™

where y is a little greater than 2. As a consequence, the topology of the Web is
“scale-free”: like many fractals, it looks the same in the large and in the small.

The same structure shows up in many other sizable networks with different
values for y: patterns of scientific citation (y ~ 3), electrical power grids (y ~ 4),
and patterns of collaboration among movie actors (y ~ 2.3). Barabasi and
Albert (1999) cite these phenomena and propose to explain them as a result
of a preferential attachment process, in which the probability of a node’s

gaining a new connection is proportional to the number of the node’s existing
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connections. If this is correct then it seems that the content of a website or a
scientific paper makes no difference to its chances of being linked to or cited:
all that matters is its current degree of connectivity. That the dynamics of
connection depend on so little explains at the same time, then, the simplicity
and the (near?) universality of the patterns they produce.

There are other ways to explain probabilistic power laws and the resulting
scale freedom, however. Adamic and Huberman (2000), focusing on the
topology of the Web in particular, argue that preferential attachment predicts
a strong correlation between age and connectedness that does not exist; they
propose an alternative explanation, also highly abstract but giving a web site’s
content a role in attracting links.®

Similar critiques have been made of the neutral theory of biodiversity as
well as of other models that purport to explain interesting swathes of universal-
ity by treating factors that seem obviously relevant as non-difference-makers
(such as Bak’s (1996) proposal to use a model of an idealized pile of sand to
explain patterns in earthquakes, stock market crashes, and extinctions): there
are many different ways to account for a given simple behavior. What explains
a power law probability distribution in one system may be rather different

from what explains it in the next.

2.5 Evolvability

Macrosimplicity tends to provide, as I remarked earlier, a relatively stable
environment in which sophisticated systems may evolve—an environment
in which air is distributed uniformly, the same food plants and animals stay
around from year to year, and so on. But stability can be more than just a
backdrop against which natural selection and other evolutionary processes

(such as learning) operate. It can be the very stuff of which sophisticated

8. In a useful survey of “network science”, Mitchell (2009, 253-255) covers these and
further sources of skepticism, including assertions that power laws are not nearly so widely
observed as is claimed.
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systems are made.

Simon (1996) identified modularity and the concomitant stability as a
key element of evolvable systems. Thinking principally of gradualist natural
selection, in which adaptation is a consequence of a long sequence of small
changes in a system’s behavior, he reasoned that in a convoluted system such
changes will be hard to come by since minor tweaks in implementation will
tend—at least sometimes—to effect radical transformations of behavior, in
which all accumulated adaptation will be lost. What is needed for evolution,
then, is a kind of organization that responds to minor tweaks in a proportional
way: the system’s behavior changes, but not too much.”

This amounts to a kind of measured stability. An evolvable system should
have many stable states or equilibria; natural selection can then move among
them, finding its way step by step to the fittest. Stuart Kauffman describes
such systems—perhaps overly dramatically—as occupying the “edge of chaos™
they are on the one hand not totally inert, their behavior too stubbornly fixed
to change in response to small tweaks, but on the other hand not too close
to chaos, where they would react so violently to small changes that gradual
evolutionary progress would be impossible (Kauffman 1993).

The near-decomposability of hierarchical or modular systems described
in section 2.2 is, Simon thought, the key to evolvability. When such systems
take a microlevel step in the wrong direction, Simon argued, then at worst a
single module is disabled; the hard-won functionality of the rest of the system

is preserved."’

9. Qualitatively the same phenomenon is sought by engineers of control systems, who
want their systems to react to input, but not to overreact—a central part of the subject matter
of Wiener’s (1965) proposed science of sophisticated complexity, which he called cybernetics.
The additional chapters in the second edition of Wiener’s book touch upon evolution by
natural selection.

10. At least, that is the upshot of Simon’s fable of the watchmakers Tempus and Hora.
In real biology, deleterious mutations are often fatal; the evolvability challenge is more
to find scope for small improvements than to rule out catastrophic errors. But perhaps
it is also a consequence of near-decomposability that a meaningful proportion of tweaks
will tend to result in small improvements rather than drastic and almost always disastrous
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Kaufmann’s best-known work concerns models of genetic regulation (his
“NK models”) that are in no way modular but that exhibit the same modest
pliability: they typically respond to small random changes in configuration
by changing their behavior, but not too profoundly.

Much recent scientific work on evolvability belongs to the new field of evo-
lutionary developmental biology, in which modularity remains an important

theme (see section 3.3).

2.6 Other Approaches

Mathematical derivation has been the preferred tool in the explanations of
macrosimplicity and universality surveyed earlier: certain factors are proved
not to make a difference to the behavior of certain macrolevel properties (or at
least a proof sketch is provided). But complexity theorists have other methods
at their disposal.

The first is an empirical search for universal behaviors. Where diverse
systems are found exhibiting the same simple macrolevel behaviors, there
is at least some reason (perhaps very far from conclusive, as the case of net-
work topology suggests) to think that they share the same abstract difference-
making structure.

The second is simulation. Rather than proving that an abstract difference-
making structure induces a certain behavior, systems realizing the structure in
various ways can be simulated on a computer; if the same behavior appears in
each case, there is at least some reason to think that the structure in question
is in each case responsible. (The many uses of simulation are treated more
generally in a separate entry in this handbook.)

The third is open-ended computer experimentation. Wolfram (2002) ad-
vocates the computer-driven exploration of the behavior of cellular automata
in the hope of discovering new abstract difference-making structures and

developing new ways to model nature.

reconfigurations.
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3. From Simplicity to Sophistication

Begin with simplicity—often itself emerging from lower-level convolution, as
in the case of the simple, regular behavior of bNaA molecules, neurons, even
animal populations. Begin, that is, with an inventory of parts whose dynam-
ics conforms to simple mathematical equations. What kinds of surprising
behavior can you expect from these parts?

Even in isolation, a system whose dynamics is simple in the mathematical
sense can do unexpected things. The “catastrophe theory” of the 1970s showed
that systems obeying one of a family of simple, smooth macrolevel laws that
induce fixed-point equilibrium behavior can, when subject to small external
perturbations, leap to a new equilibrium point that is quite far away. This is a
“catastrophe”; the mathematics of catastrophes has been used to explain the
buckling of a steel girder, the radically different development of adjacent parts
of an embryo, and the collapse of complex civilizations (Casti 1994).""

The “chaos theory” of the 1980s showed that systems obeying simple
macrolevel laws can exhibit a sensitivity to initial conditions that renders
their long-term behavior all but unpredictable. Whats more, holding the
law fixed but altering one of its parameters can change the system’s behavior
from a simple fixed-point equilibrium, through periodic behavior—repeatedly
visiting the same set of states—to chaos by way of a “period-doubling cascade”,
in which the set of states visited repeatedly doubles in number as the parameter
increases or decreases, in accordance with a pattern that shows remarkable
universality captured by the “Feigenbaum constants” ">

Although interesting and largely unforeseen, these behaviors are not par-
ticular to complex systems and are not sophisticated—not goal-directed, not

adaptive, not intelligent. For sophistication, it seems, you need to put together

1. For an assessment of catastrophe theory, see Casti (1994, 77-83), which includes a
useful annotated bibliography.

12. Stewart (1989) provides an accessible summary of this work and other results in chaos
theory.
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many simple parts in the right sort of way.

Two related questions, then. First, what is the “right sort of way”? What
structures give you not merely convolution, but sophistication? Second, must
there be an architect? Or do some of these structures emerge spontaneously,
in circumstances that are not vanishingly rare? Are there parts that tend
to “self-organize” into the kinds of structures that give rise to sophisticated

behavior?

3.1 The Nature of Sophistication

What is sophisticated behavior? The notion, although expositorily useful, is
aloose one. In a liberal spirit, let me consider a range of possible marks of
sophistication.

The first is adaptation or plasticity. An adapted system is one whose behav-
ior in some sense fits its environment (relative to a presumed or prescribed
goal). A plastic system is one whose behavior is capable of changing in re-
action to the circumstances in order to realize a presumed or prescribed
goal—finding its way around obstacles, anticipating difficulties, abandon-
ing strategies that prove infeasible for promising alternatives. It might be a
plasmodium, a person, or a self-driving car.

The second characterization of sophistication is considerably less demand-
ing. Some behavior is so stable as to be deadly boring—as is the macrolevel
behavior of the rock sitting in the field. Some behavior is so convoluted as to
be bewildering in a way that is almost equally boring—as is the microlevel
behavior of the rock, with its multitude of molecules all vibrating this way
and that, entirely haphazardly. Between the two, things get interesting: there
is order, but there is variation; there is complexity, but it is regimented in
ways that somehow call out to our eyes and our minds (Svozil 2008). Sys-
tems that have attracted complexity theorists for these reasons include the
hexagonal cells of Bénard convection, the wild yet composed oscillations of Be-

lousov-Zhabotinsky chemical reactions, the more intriguing configurations
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of the Game of Life, and the sets of equations that generate the Mandelbrot
set and other complex fractals."

A third criterion for sophistication is as strict as the previous criterion
is lax: sophisticated behavior should exhibit intelligence. Intelligence is of
course connected to plasticity, but it is a more open-ended and at the same
time more demanding kind of sophistication.

My fourth and last criterion attempts to generalize plasticity, not like the
previous criterion in the direction of thought, but in the (closely related)
direction of animal life. What does that mean? Perhaps having a certain sort
of “spontaneity”. Perhaps having the characteristics of a typical animal body:
appendages, controlled motion with many degrees of freedom, distal senses
that control movement, the ability to manipulate objects (Trestman 2013).

These, at least, are some of the behaviors that go beyond simplicity and that
complex systems theorists have sought to explain using some variant or other
of “complexity theory”, understood as a big, broad theory of sophisticated
behavior. Two exemplary genres of this sort of complexity theory will be

considered here: energetic and adaptive approaches.

3.2 Energetics

The universe is always and everywhere winding down—so says the second
law of thermodynamics. But this does not mean everywhere increasing decay
and disorder. Life on Earth evolved, after all, in accordance with the second
law, yet it is a story (if you look at certain branches) of growing order. Might
the increasing energetic disorder prescribed by the second law tend to be
accompanied, under the right circumstances, by an increasing order of an-
other sort—increasing complexity, increasing sophistication? The fabulous

principle specifying this conjectured tendency to complexity is sometimes

13. These phenomena are discussed in many books on complexity and related fields. For
Bénard and Belousov-Zhabotinsky, see for example Prigogine (1980); for the Game of Life,
Mitchell (2009); for the Mandelbrot set, Stewart (1989).
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called, whether affectionately or incredulously, the fourth law of thermody-
namics. Were it to come to light, it would provide a foundation for a theory
of sophisticated complexity with the widest possible scope.

What are the right conditions for the thermodynamic generation of so-
phisticated structure? Consider, naturally, the planet Earth. Energy pours in
from the sun, making things interesting. That energy is then mostly radiated
into space, in a sufficiently disordered form to comply with the second law.
The second law says that systems tend toward equilibrium, as the system
containing the sun, Earth, and space very slowly does. But as long as the
sun burns, it maintains the surface of the Earth itself in a state very far from
thermodynamic equilibrium, a state in which there are large temperature
differentials and inhomogeneities in the material structure of things.

Other smaller and humbler systems are also maintained far from equilib-
rium in the same sense: a retort sitting over a Bunsen burner, or a thin layer
of oil heated from below and pouring that heat into the air above. Taken as
a whole, the system obeys the second law. But as long as the heat flows, the
system in the middle, between the heat source and the heat sink, can take
on various intricate and sophisticated structures. In the thin layer of oil, the
hexagonal cells of Bénard convection develop, each transporting heat from
bottom to top by way of a rolling motion. Such an arrangement is often called
a dissipative structure, operating as it does to get energy from source to sink
as the second law commands.

That the dissipation is accompanied by the law-like emergence of an
interesting physical configuration is what captures the attention of the theorist
of complexity and energetics—suggesting as it does that the entropic flow of
energy goes hand in hand with sophisticated flow-enabling arrangements.
Two laws, then: a “second law” to ensure dissipation; a “fourth law” to govern
the character of the complex structures that arise to implement the second law.
Followed by a bold speculation: that ecosystems and economies are dissipative

structures that can be understood with reference to the fourth law (Prigogine
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1980).

What, then, does the fourth law say? In one of the earliest and most lucid
presentations, Lotka (1945) proposed a fourth law according to which the
throughput of energy in a system maintained far from equilibrium tends to
increase. The law says, then, that in systems maintained far from equilibrium,
dissipative structures will tend to evolve so as to maximize the rate at which
energy passes from source to sink.

Lotka was writing principally about biological evolution, and his reasoning
was Darwinian: organisms will evolve, he believed, to maximize as far as
possible their uptake and use of energy from the environment, and so, as
a second-law corollary, to maximize the amount of energy that they dump
back into the environment in disordered form.'* It is selective pressure, then,
that powers the fourth law, by choosing, from among many possible physical
configurations, those systems that conform to the law.

The fourth law is not, however, confined to biological systems; according to
Lotka it holds in any system of “energy transformers” of the right sort, in virtue
of something analogous to natural selection. Lotka goes on to characterize the
notion of an energy transformer in greater detail, in terms of functional units
termed “receptors’, “effectors”, and “adjusters”. He concludes that “a special
branch of physics needs to be developed, the statistical dynamics of systems of
energy transformers” (179).

A tendency for energy flow to increase is not the same thing as a tendency
for sophistication to increase. But followers of Lotka, and to a certain extent
Lotka himself, have thought there to be a connection: the most effective
way to increase the energy flow through a dissipative structure will typically
be to make it more sophisticated. So Depew and Weber (1988, 337) write:

“It is an essential property... of dissipative structures, when proper kinetic

14. The key underlying assumption is that there is always some way that at least some
species in an ecosystem can put additional free energy to use to increase fitness, and that
natural processes of variation (such as mutation and sexual reproduction) will sooner or later
stumble upon that way.
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pathways are available, to self-organize and... to evolve over time toward
greater complexity’'?

There are numerous difficulties in formulating a fourth law, especially
one that has something to say about the emergence of sophistication. Most
importantly, perhaps, writers after Lotka have tended to ignore the significance
of his careful characterization of energy transformers. It is nevertheless worth
putting aside these objections to focus on another problem—that a fourth
law has meager empirical content—because rather similar complaints can be
made about every general theory or principle of sophisticated complexity.

What does the fourth law predict? The law is not intended to prescribe
any particular variety of sophistication; its empirical content consists rather
in its ruling out a certain kind of event, namely, a system’s failure to become
more complex. On the face of things, this prediction seems to be a bad one:
evolutionary stability, in which nothing much changes, is the statistical norm.
More generally, dissipative structures, whether thin layers of oil or tropical
rainforests, do not tend to become arbitrarily complex. It is for this reason that
Depew and Weber hedge their statement of the fourth law above by specifying
that it holds only “when proper kinetic pathways are available”.

What, then, makes a kinetic pathway “proper” or “available”? Not bare
physical possibility: a system consisting of many agitated molecules has an
infinitesimal probability of doing all sorts of astonishing things—currents
in gently heated oil might, for example, form the image of a monkey at a
typewriter—yet they do not, because of such events’ vanishingly low proba-
bility. In that case, what is the fourth law saying? That dissipative structures
tend to become more complex, provided that they are not unlikely to do so?
Without the hedge, the fourth law is false; with the hedge, it seems not much

more than a bland truism.

15. To better secure the connection to complexity (in the sense of sophistication), De-
pew and Weber amend Lotka’s fourth law: rather than maximizing energy flow, structures
minimize specific entropy—entropy created per unit of energy flow—thus using energy in a
certain sense more efficiently.
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3.3 Adaptation

The literature on general theories of complexity in the 1980s and 1990s con-
tained numerous references to “complex adaptive systems”. Is it their com-
plexity that allows such systems to adapt? Often, what is meant is something
different: they have become complex through adaptation (perhaps after some
other process of emergence has provided “evolvable” parts, as discussed in
section 2.5). In Lotka’s theory, organisms evolve to maximize their uptake and
use of energy from the environment, and so, as a second-law corollary, they
maximize the amount of energy that they dump back into the environment in
disordered form.'® It is selective pressure, then, that secures the truth of the
fourth law, by choosing, from among many possible physical configurations,
those systems that conform to the law.

Putting thermodynamics entirely to one side, it has of course been appre-
ciated ever since Darwin that natural selection is capable, given the character
of life on Earth, of building ever more sophisticated systems (though as re-
marked in the previous section, complexification is only one evolutionary
modus operandi among many). So what of novel interest does putting “adap-
tive” in the middle of “complex systems” accomplish? To what extent is there
a theory of the development of sophisticated complexity by way of natural
selection that goes beyond Darwin and modern evolutionary biology?

The answer is that attempts at a general theory of “complex adaptive

systems” hope to do one or both of two things:

1. Apply broadly Darwinian thinking outside its usual biological scope, us-
ing new methods for discovering and understanding the consequences

of selection.

2. Find patterns or tendencies common to a large class of systems that

16. In some places, Lotka implies that it is an ecosystem as a whole that maximizes the
rate of energy throughput; how exactly selection explains this systemic maximization is left
unspecified.
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includes both those in which adaptation is driven by natural selection
and those in which it is effected by other means, such as learning.
Gell-Mann (1994a), for instance, provides a very liberal definition of
adaptivity, and writes that “an excellent example of a [complex adaptive

system] is the human scientific enterprise”.

The investigation of “artificial life” is an example of the first sort of project.
Under this heading, researchers aim to abstract away from the implementation
of reproduction and inheritance on Earth—from pna and RNA and the cellular
mechanisms that coordinate their replication and variation—and model, using
computer programs or other fabricated constructs, systems in which these
things happen by alternative means. In Tom Ray’s influential Tierra model,
the stuff of life is code itself: the “organisms” are small computer programs that
consume CPU time and use it to replicate themselves, sometimes recombining
and sometimes mutating (Ray 1992). What happens in Tierra is not the
simulation of evolution by natural selection in some other system, then, but
the real thing: the scarce resource is cpu time and survival and reproduction
is not represented but rather instantiated in the persistence and replication of
units of code. The behavior of these and similar experiments is quite engaging:
researchers see the development both of sophisticated complexity (up to a
point) and of parasitism. Yet it is as yet unclear whether artificial life has any
general lessons to teach about complexity, above and beyond what is already
known from mainstream evolutionary biology (Bedau et al. 2000).

When the Santa Fe Institute was founded in 1984 to promote the interdisci-
plinary study of complex systems, the ideal of a general theory of sophisticated
adaptive systems was an important element of its credo. A series of popular
books celebrated the promise of this program of research (Lewin 1992; Wal-
drop 1992; Gell-Mann 1994b). But by the late 1990s, many figures associated
with the theory of sophisticated complexity had begun to worry, like Simon
(1996), that “complexity... is too general a subject to have much content” (181).

Surveying the ghosts of general theories of complexity that have paraded by
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in the past one hundred years—cybernetics (Wiener 1965), general system
theory (von Bertalanffy 1968), autopoiesis (Varela et al. 1974), synergetics
(Haken 1983), self-organized criticality (Bak 1996)—the inductively inclined
non-specialist might well, at least in the case of sophisticated complexity,
concur.

That does not mean that an emphasis on complexity in the abstract is
not theoretically fruitful. One of the most exciting fields in science in the
last few decades has been evolutionary developmental biology, which uses
discoveries about the genetic modulation of development to better under-
stand how complex body plans evolved (Raff 1996; Gerhart and Kirshner
1997). An important part of the explanation seems to be, as Simon envisaged,
modularity: some important evolutionary steps were taken not by drastically
re-engineering modules’ internal workings but by tweaking the time and place
of their operation.

The feel of the science is typical of the study of many complex systems.
On the one hand, the empirical findings, though hard won through great
amounts of tedious and painstaking research on particular systems, cry out to
be expressed at the highest level, in abstract vocabulary such as “complexity”,
“modularity”, “switching”. On the other hand, attempts to generalize, leaving
the particular topic of the development and evolution of life on Earth behind
to say something broader about the connection between modularity and
complexity, seem to produce merely truisms or falsehoods. Thinking about
sophisticated complexity in the abstract remains as enticing, as tantalizing
as ever—but the best theories of sophisticated complexity turn out to have a

specific subject matter.

4. Conclusion

Two intriguing features of complex systems have been discussed in this essay:
simple behavior at the high level emerging from convoluted underpinnings,

and sophisticated behavior at the high level emerging from simple underpin-
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nings. Complexity theory has sometimes concerned itself with the one sort
of emergence, sometimes with the other, and sometimes it seems to aim for
both at the same time, seeking to explain behaviors that are both surprisingly
stable and surprisingly sophisticated.

The default approach to complex systems, registered in the segregation of
the university departments, is to tackle one kind of stuff at a time. The term
“complexity theory” implies a more interdisciplinary enterprise, an attempt
to identify commonalities among complex systems with radically different
substrates: to find connections between ecosystems and gases, between power
grids and the World Wide Web, between ant colonies and the human mind,
between collapsing cultures and species headed for extinction.

With respect to the emergence of simplicity from convolution, I have been
(as a partisan) optimistic about the possibility of substantive general theories,
although a complete understanding of simplicity’s basis in complexity will
surely require many distinct ideas at varying levels of abstraction.

With respect to the emergence of sophistication from simplicity, there
is less progress on general theories to report, and considerable if reluctant
skepticism even in friendly quarters—but plenty of interesting work to do on

individual systems, with results that will surely continue to fascinate us all.
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