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Abstract

�e system for awarding credit in science—the “priority rule”—functions, I

have proposed elsewhere, to bring about something close to a socially optimal

distribution of scientists among scienti�c research programs. If all goes well,

then, potentially fruitful new ideas will be explored, unpromising ideas will

be ignored, and fashionable but oversubscribed ideas will be deprived of

further resources. Against this optimistic background, the present paper

investigates the ways in which things might not go so well, that is, ways in

which the priority rule might fail to realize its full potential as an incentive for

scientists to work on the right things. Several possible causes of “herding”—

an outcome in which a single research program ends up with a number of

researchers well in excess of the optimum—are considered.
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H
erding happenswhenmembers of a scienti�c community overwhelm-

ingly favor a certain paradigm, methodology, or research program, in

spite of its being to science’s or society’s bene�t that the community hedges its

bets, diversi�es its research portfolio, or in other words that researchers spread

themselves more evenly among the available paths of inquiry. Compared to

the ideal allocation of scienti�c labor across research programs with di�erent

goals or methods, a herding allocation results in an ine�cient concentration

of resources on a single approach.

Why might herding occur? You ought perhaps �rst to ask why it might

not occur, or more generally, why anything approaching an e�cient allocation

of scienti�c labor and other resources among research programs might be

expected.

To answer this question is the purpose of the �rst part of the present

paper, in which I will present a simple model for thinking about the optimal

distribution of resources among research programs (section 1), and show that

the system for allocating credit for scienti�c discoveries and other contribu-

tions creates an incentive structure that comes remarkably close to promoting

the best achievable allocation of cognitive labor (section 2). In the second

part of the paper (section 3), some reasons for deviation from the optimum,

particularly those resulting in herding, are considered against this backdrop.

1. Optimality Ideally

In 1876, Charles Peirce addressed the problem of e�ciently allocating re-

sources among research projects in an addendum to the annual report of the

United States Coast Survey (Peirce 1879). He imagined two or more research

programs, each yielding a certain quantity of knowledge for a given invest-

ment of time and other resources, and asked how to distribute a �xed quantity
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of resources among the programs so as to maximize the return in knowledge.

Peirce transforms this task into a straightforwardmathematical calculation

byway of three assumptions. �e �rst is the assumption of a �xed, determinate

function—the returns function—relating resources invested to knowledge

produced. Implicit in this assumption is the irrelevance of contextual factors:

only direct investment in�uences epistemic output.

�e second is the assumption that the returns function is strictly increasing—

so investment ofmore resources always brings some return—but thatmarginal

returns are decreasing, so that the return for investing a �xed quantity of re-

sources in a program grows smaller, the greater the amount of resources

already invested in that program.

�e third and �nal assumption is that the total value of the knowledge

returned by several research programs is additive, that is, is equal to the sum of

the value of the knowledge returned by each. �is assumption does not hold

if, for example, two programs compete to make the same discovery, since the

value of uncovering the same fact twice is not double the value of uncovering

it once. As I will show in the next section, this assumption can be weakened

with interesting consequences, but for now let me stay with Peirce’s original

model.

�ere are some other assumptions implicit in the very question that Peirce

asks, for example, that there is a single scale of value, of utility, against which

the returns from any assignment of resources among programs can be mea-

sured, or that scienti�c inquiry can be divided into distinct, separately funded

research programs. I will accept these assumptions for the most part without

further comment.

Peirce’s assumptions characterize a simple model of the problem of re-

source allocation. For each research program there is a returns function with

decreasing but always positive marginal returns; the problem is to determine

the allocation of resources that maximizes the sum of the functions. Focusing

(as does Peirce, for expository purposes) on the case where there are two
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programs only, the returns functions may be written R1(n) and R2(n); the
aim is then for a given total quantity of resources N to �nd the value of n
that maximizes R1(n) + R2(N − n). When N is large enough, the maximum

allocation will be found where the derivatives of the two functions are equal,

that is, at the point where one additional unit of resources would bring an

equal marginal return if invested in either program. (For simplicity’s sake, let

me for the most part ignore, in what follows, the case where the maximum

requires that all resources be directed to just one of the two programs.)

As Peirce notes, the maximum may be found by following a hill-climbing

algorithm. If you imagine the �xed quantity of resources becoming available

one unit at a time, then you can ensure that they are optimally distributed

by sending each latest increment to whichever of the two programs o�ers

the greater marginal return for the investment. �e same is true if the total

quantity of resources to invest is not �xed but increases forever: always allocate

incoming resources to the program that yields the greater marginal return,

and you are guaranteed that at every moment from now until eternity, you

have achieved the best possible distribution of the available resources. �is

holds regardless of the number of research programs clamoring for money,

brains, and equipment.

To implement the Peircean hill-climbing method, you ought ideally to

be all-knowing, all-powerful, and benevolent. All-knowing, you grasp the

form of the true returns functions, so that you can correctly determine which

investment will bring the greatest marginal return. All-powerful, you have

complete control of the available resources, and so can e�ect whatever distri-

bution seems best to you. Benevolent, the distribution that seems best to you

is the distribution that is best for society as a whole, presumably maximizing

the quantity of knowledge produced, weighted by the social and intellectual

value of that knowledge.

Peirce’s paper was written for his superior, the Superintendent of the

Coastal Survey, who he might reasonably have supposed to approximate
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these qualities—all-powerful for bureaucratic reasons, all-knowing insofar

as much of the research undertaken by the Survey was applied science in

which the returns for a given investment were reasonably well understood,

and socially benevolent in that nineteenth-century fashion typical of the

aristocracy to which the superintendents belonged (as did Peirce’s own father,

superintendent from 1867 to 1874).

In modern research science there are no more superintendents. But let

me imagine a Superintendent existing in ideality if not reality. �is �ctional

person is all-knowing, I stipulate, in the sense that they are in possession of

all information currently available to science; they may not know the “true”

returns function for any given scienti�c research program, but they know as

much as there is, presently, to be known. �eir best guess as to the form of

the function, then, is as good as anyone’s guess. Consequently, they represent

an epistemically relative ideal, the closest thing to the true returns function

to which we in principle have access, given the current state of scienti�c

knowledge.1

�e Superintendent is benevolent in precisely the nineteenth-century

fashion: they seek to maximize the total social bene�t, in the broadest sense,

returned by scienti�c research. And they are all-powerful, in that they have

total control over the distribution of scienti�c resources. Most important—

since my ultimate topic is herding, which is in the �rst instance a matter of

the distribution of scientists rather than of other resources—they have total

control over which scientists work on which research programs.

�e Superintendent’s notional decisions as to how to distribute cognitive

labor may be understood as a kind of ideal against which actual allocations of

resources in science can be measured. Such an ideal is not, of course, beyond

criticism. Now that we no longer live in the nineteenth century, the notion of

1. From a Bayesian perspective, the Superintendent will not have a single “best guess” but

a probability distribution over possible returns functions. In what follows, talk of a “best

guess” stands in for all such other implementations of the Superintendent, on the details of

which nothing in this paper turns.
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a uni�ed measure of social good is somewhat suspect (even if such measures

are frequently used to construct and evaluate public policy). Likewise, it is

unclear that the diverse views of the world’s many scientists can be melded

into a single “best guess” at the true returns function. But put these worries

aside; this is a paper about herding in a volume about herding, and the very

notion of herding presupposes a fact of the matter about the ideal allocation

of cognitive labor, from which when herding occurs, the actual allocation

departs. �e notional creation of a Superintendent may underestimate the

problems in constructing such an ideal, but a �rst approximation to the ideal

will be enough to motivate some potential explanations for herding.

In the same spirit, I will throughout this paper retain a number of Peirce’s

other assumptions, while recognizing that at best they hold only approximately

true: that returns functions have no externalities, so that a research program’s

return is determined entirely by the amount of resources directly invested

in that program; that returns functions o�er strictly decreasing marginal

returns; and so on. (�e additivity assumption will, however, be relaxed,

as noted above.) �e aim is to �nd out whether, even under the relatively

ideal conditions represented by these assumptions, there are circumstances

in which herding is liable to occur.

Putting these principled di�culties aside, what practical impediments are

there to real science’s mirroring, in its allocation of resources and of cognitive

labor in particular, the Superintendent’s ideal allocation? �ere are two.

First: except under extraordinary circumstances (immanent climatic catas-

trophe, for example), there is not the kind of amalgamation of information

that allows all relevant parties to come to know the profession’s “best guess”

as to the form of the true returns function. Indeed, there are incentives for

scientists competing to realize some research goal to withhold information

about the prospects of their programs from one another. Still, you might

suppose that broadly correct estimates are possible (where “broadly correct”

means “close to the Superintendent’s best guess”), and so that ignorance does
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not stand in the way of a broadly optimal allocation of resources.

�e second impediment is far greater: decisions as to which scientists

devote their time and energy to what projects are typically not made by a

benevolent Superintendent, but by the scientists themselves. It is scientists, or

putative scientists, who decide what to study at graduate school, what post-

doctoral positions to pursue, and how to set up their labs. To some extent,

grant-giving bodies can play the role of the Superintendent. But while these

sources of largesse dispose, they do not propose: they are essentially reactive,

and so provide at most a corrective to the allocations of labor e�ected by the

personal decisions of individual scientists.2

If each researcher thought like the Superintendent, surveying the oppor-

tunities for social amelioration o�ered by the scienti�c enterprise and meekly

going wherever the need was greatest, then perhaps this di�culty would

not be so substantial. But there is good reason to think that scientists are

rather di�erently motivated, as Peirce himself noted in the cautionary �nal

paragraph of his resource allocation paper:

It is to be remarked that the theory here given rests on the suppo-

sition that the object of the investigation is the ascertainment of

truth. When an investigation is made for the purpose of attaining

personal distinction, the economics of the problem are entirely

di�erent.

2. Optimality in Reality

How does a scientist decide to specialize in a certain domain, to inhabit a

particular intellectual niche, to devote their days to one particular problem

2. I exaggerate to some degree; for example, the nsf and other grant agencies sponsor

initiatives to draw scientists to work in areas considered undersubscribed, and grant money

determines where there are post-doctoral positions to pursue in the �rst place. �e power of

the nsf to determine the distribution of cognitive labor is nevertheless minuscule compared

to that of the Superintendent.
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above all others?

Interest and personal history play a role, but it has long been supposed

by sociologists of science that the most powerful force in such decisions, for

amateur and academic scientists, is the quest for credit (Merton 1957; Latour

and Woolgar 1986).

What is credit? It is the standing that a researcher accrues in virtue of their

past contributions to knowledge and know-how—their standing, in the �rst

instance, in the scienti�c community rather than the world at large. Credit is,

then, what other writers have called reputation, credibility, prestige, status,

fame. (Perhaps these are not exactly the same thing, but �ne distinctions

will not matter in what follows; I will proceed with a perhaps unrealistically

monolithic conception of the social rewards of good science.)

What is the value of credit? �ere is on the one hand an intrinsic satis-

faction to be found in the esteem of other scientists, well captured by Paul

Samuelson’s famous words:

In the long run, the economic scholar works for the only coin

worth having—our own applause. (Samuelson 1962, 18)

On the other hand, this same esteem is of the utmost instrumental importance:

from prestige �ows the resources to do more science, namely, grant money,

lab space, and graduate students, to say nothing of a larger o�ce and a higher

salary (as emphasized by Latour and Woolgar 1986). In short, this intangible

social resource credit provides rewards intellectual, emotional, and material,

as well as the wherewithal to go on doing science at a similarly high level,

thereby generating yet more credit.

�e prospect of credit is therefore a powerful motivator in any research-

related decision a scientist might make, not least the decision as to what

research program to join or to instigate in the �rst place. It is not the only

such motivator. �ere are other intellectual and moral motivators, such as

curiosity and the desire to increase human happiness. �ere are othermaterial
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motivators, such as the prospect of lucrative patents or positions in industry

or government. In what follows, however, let me focus on credit.

�e Peircean Superintendent distributes resources among research pro-

grams so as to maximize overall social good. If the Superintendent is wise

and competent, society bene�ts accordingly—so Peirce promises. But if the

prevailing sociological wisdom is correct, then in real science, or at least in

real academic science, what drives decisions about the allocation of cogni-

tive labor are not the aloof and benevolent intentions of a central planner,

but rather individual scientists’ independent strivings for credit. Investiga-

tions are undertaken, in Peirce’s words, “for the purpose of attaining personal

distinction”. What hope, then, of a socially satisfactory outcome?

To answer this question—far more optimistically than Peirce himself

anticipates—let me begin with the ideal rather than the real. Under what

circumstances will credit-seeking scientists distribute themselves among re-

search programs in just the way that the notional Superintendent would

distribute them? In what circumstances, that is, will scientists in pursuit of

their own private ends achieve a socially optimal distribution of labor? (Or

rather, a distribution as socially optimal as the present state of knowledge,

epitomized by the Superintendent’s best guess at the relevant returns functions,

allows?)

What circumstancesmake a di�erence to the distribution of credit-seeking

scientists’ labor? Above all, the social norms for distributing credit itself. In

principle, such norms might take any form you like. All scientists might be

accorded equal credit, regardless of their contributions to the store of scienti�c

knowledge. Scientists might be accorded credit in proportion to the energy

and time that they put into their researches, regardless of the outcome. Or—

closer to the scheme observed by sociologists in real science—credit might be

proportioned to actual achievement, regardless of the time, talent, energy, or

other sacri�ce required to produce that achievement. Possible norms di�er

also in the way they measure the value of an achievement. Some may take

9



into account only the practical value of a discovery. Some may take into

account only a discovery’s theoretical value. In the latter case, some may take

into account the satisfaction that the general populace takes from scienti�c

knowledge, while others may care only for the intellectual stimulation of

specialists. Any of these choices seems possible; indeed, each of them is

familiar as a scheme for distributing something or other of worth in human

society.

You might, then, imagine a lazy variation on the Peircean Superintendent

who, rather than doing the hard work of allocating cognitive labor themselves,

decides to use their unlimited power over the world of science to determine

in advance a rule by which credit will be doled out, selecting a scheme that

will ensure that scientists make decisions about their own future research that

e�ect the very same distribution of labor that amore assiduous Superintendent

would have commanded directly. My questions: Is such a scheme available? If

so, is it the kind of scheme that would be humanly acceptable—does it comport

well enough with basic human notions of fairness and reasonableness? And

how close is it to the actual scheme for rewarding researchers with credit?

In answering the �rst of these questions—in determining what rules for

distributing credit will amount to an incentive scheme that, as a byproduct of

individual scientists’ self-interested credit-seeking behavior, brings about a

socially optimal allocation of labor—I will make several simplifying assump-

tions. First, I continue to focus on the allocation of cognitive labor and not at

all on the distribution of other resources necessary for doing science, such as

expensive experimental equipment. Sincemy topic is herding, and herding is a

matter of the distribution of minds, this is not a signi�cant distortion. Second,

I assume that a scientist’s decision as to which research program to grace with

their intellect is entirely determined by the desire to maximize the amount

of credit earned. �e ultimate question is whether credit-seeking behavior

distorts such decisions for better or worse; the e�ects of other motivators will

be put aside. �ird, I make the same assumptions that Peirce makes: a pro-
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gram’s returns are entirely determined by the quantity of resources invested;

its marginal returns are decreasing but non-disappearing, and there is a uni-

vocal scale of social good against which any particular basket of returns can

be measured. I also at �rst assume that, according to the scale of social good,

the aggregate social value provided by any two research programs is equal to

the sum of the values of each in isolation—the assumption of additivity.

Suppose that several research programs are competing for resources.

Peirce’s Superintendent, you will recall, is able to maintain the optimal alloca-

tion of resources at all times by following the hill-climbing rule: assign the next

unit of resources—the next scientist-hour—to whichever program o�ers the

higher marginal return upon the investment of that resource. Credit-seeking

scientists will mirror the decisions of the Superintendent if they distribute

themselves so as to conform to the same rule. �ey are not, of course, follow-

ing the rule consciously; rather, they choose to join, or to devote their next

week or month or year of thinking time to, the program that o�ers the higher

return, in terms of credit, to them and them alone. But the behavior of the

scientists and the notional decisions of the Superintendent will coincide if the

program that o�ers the highest marginal return to society, for the scientist’s

investment of labor, also o�ers the highest return in the form of credit to the

scientist.

�ere is an obvious way to ensure that this is so: simply reward scientists

in proportion to the marginal social return generated by their labor. For

committing a certain amount of time, energy, and talent to a research program,

then, a scientist should receive credit in proportion to the resulting increase

in the program’s social returns, or in other words, they should be rewarded in

proportion to their contribution to the social good. Implement such a norm

for the allocation of credit, and scienti�c labor will distribute itself so as to

maximize social good (Strevens 2003).

Two remarks. First, this result holds true for any measure of social good,

whether theoretical, practical, or a mix of the two. I will avoid having to
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pronounce on this question any further by adopting the Superintendent’s

de�nition of the good.

Second, I have assumed so far—as does Peirce—that the return from a

research program, for a given level of investment, is guaranteed. In reality,

research programs sometimes fail to realize their goals, or they are scooped,

meaning that some rival program reaches the goal �rst, thereby rendering

the e�orts of all other programs toward the same goal otiose. Peirce’s model

is easily applied to science in all its stochasticity, however, by understanding

the returns function as representing not the actual but the expected social

value generated by the program for a given level of investment. Credit-seeking

scientists will in that case distribute themselves so as to maximize social good

if they are rewarded for investing in a program in proportion to their expected

contribution to the program’s returns. No formal adjustments to the model

are required in order to represent the risks inherent in empirical investigation,

then; an adjustment to the model’s interpretation is enough.

Call the norm for allocating credit suggested above the expected contribu-
tion rule. How feasible is the rule? How realistic? Quite realistic, and therefore

quite feasible, is the answer: scientists do seem to earn credit in rough pro-

portion to the social payo� that can be attributed to their e�orts, both in a

narrow intellectual sense and a broad practical sense, which is to say that they

are rewarded both for plumbing the deep structure of the universe and for

discoveries that save and improve lives, the more so the more lives are saved

or bettered. In short, the actual rule for allocating credit in science seems

rather well tuned to the Superintendent’s wavelength, resulting in a pattern of

decision-making by individual researchers that tends to �nd the most socially

bene�cial distribution of cognitive labor among research programs.

A closer inspection shows, however, that the actual rule of credit alloca-

tion di�ers in two crucial, related respects from the expected contribution

rule. First, the actual rule is not an expected contribution rule but an actual
contribution rule: scientists receive little or no credit unless their research
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program succeeds in its goals. With success comes credit in proportion to a

scientist’s contribution to the probability of that success, then, but with failure

comes nothing at all, no matter how greatly a scientist’s e�orts increased the

probability of success.

Second, success itself is not su�cient for credit. A research program must

not merely make a contribution to knowledge; it must be the �rst to do so. It is

for this reason that the reward system in science is conventionally referred to

as the priority rule. When, as is o�en the case, two or more scientists vie with

each other (knowingly or not) to make the same discovery—the development

of calculus, the observation of the planet Neptune, the structure of dna, the

cause of aids—and when they both independently succeed, only the �rst

to do so is held to have any claim to the credit for the achievement. �us

the many heated disputes over who of two nearly simultaneous discoverers

has the claim to priority: Leibniz versus Newton, Le Verrier versus Adams,

Montagnier versus Gallo (Merton 1957).

Scienti�c credit is not assigned according to the expected contribution

rule, then, but according to the priority rule, which is a species of actual

contribution rule. Does it matter? Will scientists’ decisions be any di�erent

than under the expected contribution rule? As I will explain shortly, decisions

made under the priority regime will deviate systematically, if subtly, from the

Superintendent’s diktat in an interesting way. But for now let me turn to an

apparently unrelated topic, Peirce’s questionable assumption of additivity.

Returns from two or more research programs are additive if the social

value of the aggregate returns is equal to the sum of the values of the returns

of each of the programs in isolation. �e additivity assumption would seem

to hold for programs that o�er bene�ts satisfying independent needs, for

example, understanding speciation and preventing malaria. But it begins to

fail when programs promise alternative ways of satisfying the same need, and

it fails dramatically when programs have the very same goal, that is, when

rival programs attempt to make the same discovery—as exempli�ed above by
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the race to �nd the cause of aids, among other historical cases.

�e reason is this: once a discovery has been made, a further iteration of

that discovery is worthless. Gaining the same knowledge many times over

is no more bene�cial than gaining it once (except insofar as the second and

subsequent discoveries may generate novel collateral results). �e social value

of many instances of the same discovery is not the sum of the values of each

discovery in isolation; it is nothing over and above the value of a single such

discovery.

Let me focus on this case of radical additivity failure, where two or more

programs pursue the same end.3 For expository purposes, let me make some

further simplifying assumptions: there are two competing research programs;

each program either succeeds or fails completely, yielding either the full social

bene�t it is capable of providing or none at all; and the bene�t promised by

each program is the same (as is the case when the programs pursue the same

result).

From the Superintendent’s point of view, the problem may be stated as

follows. When additivity holds, the optimal social bene�t comes from the

allocation of resources that maximizes the expected number of successes

(since I am assuming that the successes of each program are equally valuable).

When additivity fails because one success renders other successes valueless,

the optimal social bene�t comes from the allocation of resources that max-

imizes the probability that at least one program succeeds. Formally, in the

additive case what should be maximized when there are two programs is

p1(n) + p2(N − n),

where p1(n) and p2(n) are the probabilities of each program’s success given

the investment of n resources and N quanti�es the total resources to be

3. In other cases additivity fails less completely; for example, two cures for the same

disease may, if the cases where they do some good overlap but not entirely, provide more

aggregate social good than either cure in isolation, but not so much as the sum of the goods

provided by each in isolation.
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distributed. In the extreme non-additive case, the race to make the same

discovery, what should be maximized is

p1(n) + p2(N − n) − p12(n,N − n)

where p12(n,m) is the probability that both programs succeed, given the

allocation of n resources to the �rst and m to the second. If p12(n,m) is in
general non-zero (if the two programs’ successes are not mutually exclusive),

then the solutions to the two problems will di�er: the best allocation of

resources for the additive case will be less than optimal for the non-additive

case.

To better appreciate the di�erence between the optimal distributions for

the additive and non-additive cases, suppose that one of the two research

programs has strictly higher potential than the other, in the sense that the

probability of the one program’s reaching its goal, given a certain investment,

is always greater than the probability of the other program’s reaching its

goal given the same investment. In symbols, the �rst program has a strictly

higher potential than the second just in case p1(n) > p2(n), for any choice
of n (�gure 1). In the additive case, the optimal investment of resources

always allocates more to the higher- than to the lower-potential program.

In the non-additive case, the optimal investment favors the higher-potential

program even more strongly. A Superintendent following the hill-climbing

rule, then—always allocating resources to the program that yields the higher

marginal return from the investment—will underinvest in the higher potential

program. For the same reason, credit-seeking scientists rewarded according

to an expected contribution scheme will distribute themselves so that too few

are working on the higher-potential program.

Is there a reward scheme that will do better than the expected contribution

scheme in the non-additive case? As Strevens (2003) shows, there is: namely,

an actual contribution scheme, and in particular the priority rule. (I remind

you that in the present scenario, in which programs are racing to make the

same discovery, the priority rule rewards scientists in proportion to their
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Figure 1: Returns functions for higher-potential (solid) and lower-potential

(dashed) research programs. For any investment of n resources in both, the

expected return R(n) from the higher-potential program is greater than

the expected return from the lower-potential program. When programs

pursue the same goal, this is equivalent to the probability of success p(n)
being greater, for all values of n, for the higher- than for the lower-potential

program.

expected contribution to the program they join, but only if the program

actually succeeds in making the discovery in question and is the �rst to do

so.)

�e priority rule is better in a non-additive race because, although it creates

distributions of labor that broadly resemble those created by the expected

contribution rule, it systematically favors higher-potential programs more

than does the expected contribution scheme. Under a priority regime, then,

a few more scientists will tend to work on higher-potential programs than

under an expected contribution regime; the priority rule will come closer,

then, to achieving an optimal distribution of resources among programs that

compete non-additively.

Whydoes the priority rule create an additional bias toward higher-potential

programs? Two reasons. First, under the priority rule, scientists are rewarded

only if their program succeeds. �e expected contribution rule takes into

account the size of the probability (which of course determines, along with
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the value of the goal, the expected contribution), but it does not take into

account risk aversion. Risk-averse scientists will, given the choice between

two programs to which they would make the same expected contribution,

prefer to join the program that is more likely to succeed and therefore bring

any reward at all. �is is the higher-potential program; hence, under an actual

contribution regime scientists will favor higher-potential programsmore than

they do under an expected contribution regime.

Second, under the priority rule, the success of a program is not su�cient

for the program’s scientists to be rewarded: the program must also succeed

earlier than any competing program with the same goal. If it is assumed

that higher-potential programs will tend to �nish earlier than lower-potential

programs when they do succeed—if it is assumed that the same properties

that make for a higher success probability make for a shorter expected waiting

time to success—then the crucial role of priority in the allocation of credit

will motivate scientists to favor higher-potential programs more still. (�e

assumption of a correlation between waiting time to success and probability

of success is quite empirical, but also I think quite reasonable.)

A small miracle is in evidence. It seems that the norm for distributing

credit in science is �nely calibrated to lead credit-seeking scientists to dis-

tribute themselves among research programs so as to maximize the overall

social good those programs stand to bring, as though the Superintendent

had come down among the scientists in some formative period and arranged

things just so. Even the apparently rather brutal priority rule, which denies

any credit whatsoever to a scientist who makes a discovery a week too late

(Merton 1957, 658), turns out to be aligned to a higher good, adjusting sci-

entists’ behavior as it does to better �nd a social optimum in non-additive

competitions.4

4. Some connections to the recent literature: Kitcher (1990), without discussing the pri-

ority rule explicitly, argues that self-interested scientists may distribute themselves among

research programs in a way that is more advantageous to society as a whole than the distribu-

tion achieved by high-minded scientists. Dasgupta and David (1994) propose other functions
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�ere are limits to this functional paradise. �e e�ect of the priority rule

is presumably not precisely calibrated to the mathematics of non-additivity,

depending as it does on independent variables such as the average level of

risk aversion and the correlation between a program’s chances of success and

its waiting time to that success. �us although the changes to the expected

contribution rule that transform it into the priority rule nudge the resulting

distribution of labor in the direction of optimality, there is no reason to think

that they �nd the exactly maximal distribution.

More important, the optimum that is approximately attained is optimal

relative to the Superintendent’s best guess as to the true returns functions, not

to the functions themselves. It is relative, that is, to what the returns functions

would seem to be if all current knowledge were taken into account—but

current knowledge might be misleading. Further, scientists can hardly be

expected to have at their �ngertips even all the available information; thus

they will fall short to some extent of the Superintendent’s best guess, which

itself falls short to some extent of the truth.

Finally, scientists are presumably not pure credit-seekers; sheer curiosity

and perhaps a desire to help humanity will play some role in their decisions

as to where to send their brainpower, and so these decisions will depart to

some extent from the choices urged by the priority rule.

For all that, the priority rule �nds a pretty good solution, under the cir-

cumstances, to an extremely di�cult coordination problem. �ink of the

ways in which the human race usually copes with such problems: you will

see either sporadic chaos (stampedes, exhausted �elds and �sheries, �nancial

collapses, and so on) or rigorous, computationally intensive central planning.

Somehow the scienti�c reward system avoids both. A simple rule guides sci-

entists to something that is at least creditably close to an optimal distribution

for the priority rule to play in science, such as the provision of motivation to publish as soon

as possible. For some reservations about economic approaches to thinking about the social

structure of science in general, see Hands (1997).
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of cognitive labor, requiring of them only some degree of savvy about the

prospects of the programs in their �eld and a certain level of self-interest.

It is as though an invisible Superintendent is at their side, directing them

to wherever they are most needed. But of course the Superintendent is not

invisible at all. It is the reward system of science.

3. Herding

�e point of this paper is not to praise the scienti�c reward system, and the

surprisingly satisfactory distribution of intellectual labor that it appears to

incentivize, but to ask how it might go wrong, and in particular, how it might

allow, or even encourage, herding—how it might result in far more scientists

joining a research program than the Superintendent would advise.

Under what circumstances will scientists overly favor a single research

program? �ere are various malfunctions of the scienti�c reward system that

might lead to herding:

1. Scientists might deliberately abandon the priority rule—if, for example,

it were perceived to be unfair and in need of reform.

2. Scientists might for some reason lose their taste for credit, for status,

for reputation—hard though that might be to imagine.

3. Other incentives might swamp or otherwise distort the motivating

force of credit. �en, although single-mindedly credit-seeking scientists

would distribute themselves optimally, fully human scientists might

not—if, for example, they received enormous grants from politically or

economically motivated actors to join a particular research program

regardless of its meager prospects.

4. Scientists might badly overestimate or underestimate their expected

contribution to a research program, overshooting by far the Superin-

tendent’s best guess.

19



�e latter two are more plausible explanations of present-day herding, I think;

in the remainder of this paper I will focus on the last, asking in particular

how scientists might systematically overestimate the contribution they can

reasonably expect to make from joining a certain research program, resulting

in an ine�ciently large concentration of cognitive labor on that program.

I will continue to suppose, for expository purposes, that some research

programs have higher potential than others, where for any given investment

of resources, a higher potential program yields a higher return than a lower

potential program (see �gure 1).

Consider a series of scientists choosing between two as yet unsta�ed

programs, one with higher potential than the other. �e �rst such scientist

will choose the higher-potential program. What about the second scientist?

�eir expected contribution to the higher-potential programwill be somewhat

less than the �rst scientist’s, because of the returns function’s decreasing slope.

As more scientists join the higher-potential program, the marginal return,

and thus each next scientist’s prospective contribution, continues to decrease,

until it drops below that o�ered by the lower-potential program. When things

go according to the Superintendent’s plan, then, it is the decreasing marginal

returns that prevent a program’s becoming oversta�ed: the more scientists

who join a program, the less attractive that program looks to the next scientist.

�is mechanism will function as speci�ed, putting a brake on scientists’

joining the higher-potential program, provided that everyone’s opinion of

the program’s underlying potential—its returns function—stays constant. But

what if their opinion of the underlying potential improves as the number of

scientists working on the program increases? What if this improving opinion

makes up for, or more than makes up for, the braking e�ect? �en as more

scientists join the program, its attractiveness to new credit-seeking recruits

will not decrease, and may even increase. As long as this goes on, scientists

will join only the one program, ignoring all others.

Is this herding? It depends on the reason for the increase in the opinion of
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the program’s underlying potential. Let me discuss two possible mechanisms

for the increase. First, it may be that scientists come to see the program

as having more potential because, as more scientists work on the program,

they reveal underlying strengths in the program that were not previously

known. �e improvement in opinions is due, in this case, to improvements

in knowledge about aspects of the world on which the success of the program

depends. Second, it may be that scientists do not learn anything directly

about the world, but that they react to other scientists’ joining the program by

supposing that there must be some relevant information about the world of

which the joiners, but not the observer, are aware. Without knowing what this

information is, they nevertheless revise their opinion of the program upward.

Consider the �rst of these mechanisms, which is driven by the acquisition

of new information about the world. Let me take a moment to discuss the way

inwhich the reward systemdeals with this epistemic dynamic. In Peirce’s setup,

the Superintendent’s best guess as to the returns functions never changes. For

a given quantity of resources, then, the optimal allocation will not change. In

real science, however, new information inevitably will come to light, in view

of which the Superintendent’s informed opinion about the returns functions

will change. �us, what seems optimal will evolve, or if you like, what was

optimal relative to the old epistemic situation will be suboptimal relative to

the new situation. If suboptimally distributed resources can be reassigned to

implement the new optimum, the Superintendent will make it happen. In

the case of cognitive labor, however, the resource is hours spent, something

that cannot be retrieved without turning back time. �e Superintendent is

all-powerful, but not that all-powerful. �e best they can do is to use new

resources, as they become available, to repair the suboptimality, working

toward the optimal allocation for the new quantity of resources.

�e Superintendent is �ctional, of course, but the reward system in science

reacts to new information inmuch the same way. As new information appears,

scientists’ estimates of the expected contribution they will make to the various
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available programs will change, and so their opinion as to which program will

o�er the most enticing return, in terms of credit, will change along with it. As

a consequence, they will, unwittingly, do just what the Superintendent would

do: they will distribute their time so as to proceed from a distribution newly

revealed as suboptimal to the optimal distribution as fast as is feasible. By

mirroring the Superintendent’s actions as closely as possible, then, the reward

system implements the best distributional policy that is possible given the

available information about programs’ true returns functions.

Herding means not just scientists’ �ocking to a single research program,

but also their doing so suboptimally. In the case where new research continu-

ally turns up evidence pointing to greater and greater underlying potential

for the program in question, what the scientists do is not suboptimal at all.

�us it is not herding, but a reasonable and desirable recalibration of the

distribution of resources. Sending all those scientists to a single program is

just what the Superintendent would do, and without knowing more than the

Superintendent, that is the best that can be done.

Consider now the second mechanism by which, as more scientists join a

program, other scientists’ estimates of the program’s underlying potential may

improve. In this case, the scientists revising their opinions are not learning

anything about the world. �ey presume that the scientists joining the pro-

gram know more than they do, and it is this putative additional information

that improves their opinion of the program’s underlying potential. But there

is in fact no such information; the scientists joining the program do not know

any more than the rest. (Or let me stipulate that they know no more, for

simplicity’s sake.)

�e upward revision of opinion is an error, then, in the sense that it

does not re�ect a change in the views of the Superintendent, who has all

information available to the scienti�c community at their �ngertips. From the

Superintendent’s perspective, the in�ux of scientists to the relevant program

is suboptimal, based as it is on information that in fact reveals nothing new
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about the program’s prospects. It is a case of herding.

�e cause of the herding is what might be called an epistemic mirage, in
which scientists infer the existence of evidence that no one in fact possesses.

Epistemic mirages are mild versions of what are now called information cas-
cades. In an information cascade, epistemic feedback entirely overwhelms

genuine information (Bikhchandani et al. 1992). For herding to occur, nothing

so drastic is needed. �e mirage need only put a �nger on the scale, adding

illicitly to genuine information without necessarily rendering it irrelevant.

Under what conditions will herding due to an epistemic mirage occur? A

necessary condition is that individual scientists are not, and know they are

not, in possession of all available information. �is is what allows observers to

wonder, of scientists joining a research program, “Do they know something I

don’t know?”.

Even if they give this question a positive answer—even if they conclude

that the joiners do have information that they, the observers, lack—themirage

need not cause herding. �e observers might quite reasonably conclude, a�er

all, that they have information that the joiners lack. For herding to occur

the observers must conclude that the joiners have information that is not

only di�erent, but better. Only then will an epistemic mirage tilt the decision-

making dynamic in favor of the joined program. But why should the observers

think that the joiners have, on average, better information? Why should they

think that the joiners are better informed than the average scientist, or that

they, the observers, are less well informed than average?

In some cases where epistemic mirages are possible (including many of

the usual examples of information cascades), the fact that the one party has

taken decisive action—walking into the restaurant or selling the securities—

gives the other, observing party some reason to think that they, still hanging

back, have less information. But scientists typically do not have the luxury

of hanging back. �ey must go to work on something or other. So they have

no reason to think that joiners are better informed than the rest. �ere is no

23



“rest”—everyone is, of necessity, a joiner.

Indeed, the observers who matter for the purposes of understanding

herding in science are about to become joiners. �ey have just �nished their

doctoral degrees, or their post-docs, or their present research project is about

to draw to a close. What reason do such scientists have for relative epistemic

insecurity? �ey are slightly junior, on average, to the joiners, but since every

observer is about to be a joiner, and every joiner was the moment before

joining an observer, the e�ect of seniority is surely vanishingly small.

It is hard to see, then, how epistemic mirages will cause herding under

the conditions in which scientists decide where to commit their labor. Or at

least, this is so provided that scientists are at least somewhat re�ective and

not prone to irrational bouts of epistemic insecurity.

I have considered two mechanisms that might cause herding. �e �rst is

quite real, but what it causes turns out not to be herding. �e second causes

herding, but there are serious doubts as to whether it is much seen in science.

Let me therefore discuss a third mechanism.

When a scientist’s research program succeeds, and is the �rst to do so, the

scientist is rewarded according to their expected contribution to the program.

Who determines the expected contribution? In the Peircean paradise, it would

be the Superintendent: their social utility function would determine the size

of the pot (equal to the total social contribution of the program), and their

best guess as to the returns function would determine the scientist’s personal

share of the pot (proportional to their marginal contribution to the probability

of success). In the real world, these determinations are made by scientists

themselves, since one scientist’s reputation subsists in the attitudes of all the

others. (In cases of life-saving or world-historical achievement, society at

large may play a role, but most scientists cannot realistically expect this degree

of success.) A narrowly credit-seeking scientist ought, then, to choose not

the program to which they expect to make the greatest contribution, but the

program to which they expect other scientists will regard them as having
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made the greatest contribution. �e reward system in science is a Keynesian

beauty contest.

Insofar as all scientists think alike, this fact has no signi�cant conse-

quences; the scientist might as well use their own expectations as proxy for

the expectations of scientists generally. In certain circumstances, however,

the two might diverge.

Consider a thoughtful credit-seeking scientist, wondering whether they

should join a research program that has as yet little recognition. In addition

to all the usual considerations (including risk aversion and the importance of

speed in a priority race), the scientist faces the following Keynesian worry:

what if, by joining the program, theymake a signi�cant contribution that is not

recognized as such? Apart from the ghostly approbation of the Superintendent,

they will gain nothing for their success, at least in the medium term on which

their survival as a scientist may depend.

To the extent that such worries are reasonable (I continue to assume that

my scientists are fairly rational), there exists the potential for an unwarranted

bias—a departure from the Superintendent’s allocation—in favor of large,

established research programs.

When, then, might scientists reasonably worry that their contribution to

a smaller research program would not be appreciated for what it is? Most

notably, when the contribution of the research program itself will not be

adequately appreciated.

In many circumstances, a scienti�c achievement will push its way into

the scienti�c spotlight on its own merits. �e successful prediction of the

degree to which light is a�ected by gravity, or of the degree of red shi� in

receding galaxies, or of the behavior of the planet Mercury’s orbit—these are

accomplishments that will not be ignored by reasonable people. �ey revolve

around the derivation, from a theory, of precise numerical predictions (or

retrodictions) whose match to reality cannot but impress informed observers.

In some domains of science, however, precise forecasts or retrocasts are
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rare, or at least are rarely correct. Achievements in these domains revolve

around �tting phenomena into an explanatory framework.

Sometimes this framework takes the form of a mathematical model with

adjustable parameters. �e model cannot be said to predict or retrodict the

phenomena in question, because the model’s parameters are tuned “by hand”

to yield the correct result. �e point of �tting the phenomena to the model

is to show that a certain kind of explanation is a plausible one. Evolutionary

theory, for example, o�en works with mathematical models that reproduce

the direction or trend of evolution with some precision, but with relatively

little predictive power because the values of parameters such as selection

coe�cients are derived in an essentially ad hoc way from the data itself.

Sometimes an explanatory framework is not quantitative at all. Much

explanation in the social sciences is like this: there are many explanations but

relatively few mathematical models in anthropology for example.

�e value of �tting data to explanatory frameworks in this way can be very

great; the rise of evolutionary theory is built on just such achievements. A

well-tailored explanation, then, can make a considerable contribution to the

advancement of science. When a theory explains a datum by its own lights,

however, the achievement may not be so obvious to the outside world. So

perhaps research program A can �t many phenomena to research program

A’s explanatory framework . . . but what does that matter if program A is

unlikely to pan out in the long term? If scientists think along these lines—and

it is arguably quite reasonable for them to do so—then the non-predictive

explanatory achievements of lower-potential theories will be systematically

underestimated in the short and medium term. But then scientists will be

reluctant to join such programs, in case they fail to receive credit in proportion

to their theoretical contribution in a timewindow that is crucial to professional

survival.

Does their reluctance stand to create a suboptimal distribution of re-

sources? A bias in favor of higher-potential programs is not necessarily a
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bad thing; such a bias is, a�er all, what makes the priority rule superior to

the expected contribution rule for allocating labor in non-additive scenarios.

But in the present case, the degree of bias depends greatly on a factor that

has no in�uence on what distribution of labor is optimal, namely, whether a

research program is more of the predictive or more of the explanatory kind.

Of two programs with equal potential—with identical returns functions—the

bias will more strongly dissuade scientists from joining the more explanatory

program. �at cannot be optimal.

My next question: can the bias operate so as to favor a single program far

more strongly than the Superintendent would favor it, thus causing herding?

I think that the answer is yes. Let me tell a story in two stages. In the

�rst stage, a budding science o�ers a number of research programs, or better,

a number of kinds of research program. One of these kinds is predictive;

the others are explanatory. (�is does not mean that the one makes good

predictions and the others bad predictions; the one’s predictions might be

quite inaccurate.) Suppose that the various programs have roughly equal

potential. Choosing among them, scientists will nevertheless—if the bias I

have been describing is real—show a preference for the predictive program.

�e preference is perhaps mild, so they will not shun the explanatory pro-

grams, but they will join them in smaller numbers, taking into account the

possibility that whatever contribution theymake to themwill bemore di�cult

to establish to the �eld’s satisfaction in the short to medium term.

In the second stage, a certain kind of feedback operates. As the relative

size of the predictive program grows, scientists quite reasonably see that a

smaller and smaller number of their colleagues, in relative terms, are in a

position to appreciate explanatory contributions to a primarily explanatory

program. (Note that as in an election, it is the proportion of appreciators, not

the absolute number, that determines the amount of credit rewarded.) �us

their worries grow in seriousness as the predictive program grows in relative

size. �e bias’s e�ects enhance the strength of the bias.
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�ere is a natural brake on this process: as more scientists join the pre-

dictive program, its marginal returns and so the joiners’ expected contribu-

tions decrease, making the program ever less attractive. But the competitor

programs—the explanatory programs—also become less attractive at the same

time, because of the feedback. If the latter e�ect outpaces the former, then

relatively ever more scientists will join the predictive program. Herding will

happen.5

Worse, herding will happen without any change in scientists’ perceptions

of the competing programs’ returns functions. Evidently, such herding might

strongly favor a programwhose predictive merits are quite modest. What mat-

ters is that the contribution it makes is a predictive contribution; the quality of

that contribution is secondary. Of course, if the program consistently fails to

deliver on its promise, estimates of its potential will fall; this may in time undo

the harmful e�ects of herding, as the attraction of the relatively unexplored

and now relatively promising explanatory programs grows large enough to

overwhelm worries about the recognition of explanatory achievement. But

that process will take time.

Can this schema account for herding in economics? �at question I leave

to the historians. But the danger seems to me to be real.

How might it be averted? Some benevolent funding body might set up

incentives providing additional motivation for scientists to join small, ex-

planatory research programs—an “institute for new economic thinking”? Still

there will be, on the other side, formidable discouragement: the worry that,

whatever the inducements, even profound contributions to such programs

will not earn economists’ own applause—“the only coin worth having”.

5. Even if the braking e�ect damps the bias, herding happens to a certain degree, since

the braking cannot undo the fact that a greater proportion of scientists join the predictive

program than is warranted by its intrinsic merits.
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