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Abstract

Assumptions of stochastic independence are crucial to statistical models in

science. Under what circumstances is it reasonable to suppose that two events

are independent? When they are not causally or logically connected, so the

standard story goes. But scienti�cmodels frequently treat causally dependent

events as stochastically independent, raising the question whether there are

kinds of causal connection that do not undermine stochastic independence.

�is paper provides one piece of an answer to this question, treating the

simple case of two tossed coins with and without a midair collision.
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1. �e Importance of Stochastic Independence

Without pervasive stochastic independence, statistical reasoning would be

of little use to us. �e principle of total evidence tells us to take everything

relevant into account when reasoning inductively, as a consequence of which,

if we are thinking about an event e, the probability of e that matters for us is

P(e ∣k), where k is all our background knowledge. Were this probability to

have di�erent values for every possible k—for every possible set of background

knowledge—wewould have to compile an immense compendiumof statistical

knowledge in order to comply with the total evidence principle. �is is true

whether the probability in question is subjective, epistemic, or physical.

Fortunately, we seem to have good reason to regard most of our back-

ground knowledge as probabilistically irrelevant to many of the events about

which we wish to reason statistically, or equivalently, many such events are

stochastically independent of most of the background. In such cases, almost

all of the background can be ignored; the probability distribution over e and
its sibling events is consequently within our human cognitive grasp (Harman

1973; Pollock manuscript).

Statistical models in science illustrate this observation by imposing physi-

cal probability distributions over phenomena that take into account only a

few parameters, and thus that assume implicitly that the events they describe

are stochastically independent of all properties not captured by these parame-

ters.1 Kinetic theory’s velocity distribution over gas molecules, for example,

supposes that a molecule’s velocity is independent of everything except tem-

perature.2 Statistical representations of certain kinds of experimental error

1. Science’s physical probability distributions are in the �rst instance over event types

rather than event tokens; in what follows, I use the term “event” to refer to both type events

and singular events as the context requires.

2. A more careful statement of the independence assumption would exclude quantities

logically related to velocity and temperature from the independence claim: kinetic theory

does not, for example, assume that a molecule’s velocity is independent of its momentum.

But there is no need to get delayed by such matters here.
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assume that errors are uncorrelated, that is, that one error is independent

of any other, as do “error functions” representing “noise” in many statistical

models in the social sciences. Finally, stochastic models in population ge-

netics make a number of independence assumptions, most notably, that one

instance of a gene’s being replicated in the next generation is independent of

any other.

When is it possible to assume that two events or states of a�airs are sto-

chastically independent? And why does independence exist, when it does?

To answer these questions, asked of the physical probability distributions

ascribed by scienti�c theories, is of great importance for the foundations

of physical probability. �e matter has, however, received relatively little

attention in the literature.

In a notable exception to this neglect, Pollock (manuscript) derives the

following principle from his theory of “nomic probability”: it is always de-

feasibly reasonable “to expect, in the absence of contrary information, that

[events] will be statistically independent of one another” (p. 11).3 You might

of course �nd this thesis quite acceptable even if you do not share Pollock’s

interpretation of probability, and many, perhaps the vast majority, of scientists

seem to regard it as, at the very least, a valid heuristic. �e usefulness of

Pollock’s principle depends, however, on how common it is to have contrary

information, and ultimately, how much contrary information there is to be

had: if contrary information exists for every pair of properties or events, then

a well-informed scientist will be unable to take advantage of the principle at

all. What facts, then, will defeat the inference endorsed by the principle?

Accepting the received wisdom, Pollock remarks that either a causal con-

nection or a logical connection between events will undermine the assumption

of independence. You might, then, formulate a more informative heuristic as

3. Pollock says “properties” rather than “events”. I remind you that by “event” I some-

times mean “event type”; with this understanding, I think that Pollock would allow my

reformulation.
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follows:

Expect, in the absence of contrary information, that events that are

not causally or logically connected will be statistically independent of

one another.

(�e “in the absence of contrary information” rider remains necessary because

there are defeaters for independence not made explicit in the principle, the

simplest example being statistical evidence against independence.)

�is paper is driven by the following problem: o�en we want to assume

the independence of causally connected events. Most o�en, the connection

is by way of a common causal origin: the events have among their causes

numerically the same event. �e existence of a common cause frequently

establishes a correlation; that barometer readings and the weather are both

caused in part by states of atmospheric pressure, for example, accounts for the

statistical connection between barometer drops and storms. �us, a shared

etiology can undermine independence.

Events with a common cause are, nevertheless, frequently treated as inde-

pendent. �ere are two kinds of cases worth mentioning. First, on a liberal

conception of what it is to share a common cause, almost any two events with

some spatiotemporal proximity have something causal in common. On a very

liberal conception, everything is perhaps causally connected by the Big Bang.

Second, even if you dismiss suchworries as overly sensitive tominor causal

commonalities, there are cases of independence where the causal connection

is anything but small. Inmany games, two dice are shaken in a cup and thrown

onto a table. �e outcomes—one for each die—are assumed to be and in fact

are independent, yet during the critical randomization operation, the shaking,

the dice interact as vigorously as any two mutual causal in�uences.

Repeated coin tosses furnish a more subtle example: that consecutive coin

tosses are made by the same person in the same frame of mind surely consti-

tutes a signi�cant similarity in causal history. Why think that the outcome of

one such toss provides no information about the outcome of the other? �eir
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common origin cannot be discounted on the grounds of causal unimportance:

the croupier who tosses the coin determines almost everything about the

initial conditions that is relevant to the outcome of a toss.

Statistical models in science provide many more examples. �e position

and velocity of a gas molecule are treated as independent of the positions

and velocities of the other molecules, even though they are determined en-

tirely by interaction with those other molecules. Similarly, an instance of

gene replication in population genetics is treated as independent of the other

instances, even though replication is determined in all cases by events in a

single, densely causally connected ecosystem.

�ese considerations together suggest that stochastic independence can

and o�en does exist in spite of a substantial, even an entire, overlap in causal

origins. Further, in science and in everyday life we take great advantage of this

fact (for more on which, see Strevens (2013)). Pollock’s principle and other

such heuristics, valid though they might be, cannot explain why certain causal

connections do not undermine independence; nor can they tell us when we

are justi�ed in assuming independence in spite of causal commonalities.

When the physical probabilities in question are irreducible, as the proba-

bilities of quantum mechanics are o�en supposed to be, the answers may be

spelled out in the fundamental laws of nature. But the great majority of physi-

cal probabilities in science and in everyday life—the probabilities attached to

gambling setups, actuarial probabilities, the probabilities of statistical physics

and evolutionary biology, the probabilities discussed byHarman and Pollock—

are not irreducible. �is paper will focus on independence in these reducible

distributions, that is, in physical probability distributions that are presumably

grounded in, among other things, facts about the causal generation of the

outcomes.4

4. Some philosophers deny the possibility of reducible physical probability. What they

cannot deny is the existence of powerful scienti�c models that represent deterministically

produced phenomena using probability distributions that incorporate sweeping indepen-

dence judgments. �e success of this practice must be explained even if reducible probability
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Here is a problem, then, in urgent need of philosophical attention: state

the conditions under which causally connected events may be assumed to be

independent, relative to the reducible physical probability distributions im-

posed on them by our best scienti�c models and theories. Or, to take a slightly

di�erent approach, in conditions that otherwise favor independence, state

the kinds of causal interaction that do and do not undermine independence.

�e extent of the project is vast. In this paper, I put just a small piece

in place, deriving conditions for independence among the outcomes of coin

tosses causally connected in two ways: �rst, two consecutive coin tosses made

by a single croupier, and second, two simultaneous coin tosses that collide

in midair. �ese results enlarge upon previous work in Strevens (2003) (for

an overview of which, see Strevens (2005) and Strevens (2013)). �e case

of colliding and other tossed coins is of course of limited interest in itself,

but some more general lessons about causation and independence will be

apparent.

2. �e Probabilistic Dynamics of Coin Tosses

Consider the following simple coin tossing setup: a coin is tossed with a

variable rotational velocity, allowed to spin for a �xed time, and then stopped.

Whichever face is uppermost determines the outcome of the toss, heads

or tails. Suppose that the underlying dynamics are deterministic; then, the

outcome of such a toss is fully determined by the physics of the coin and a

single variable initial condition, the coin’s spin speed, assumed always to be

in the same direction. (�e physics of a real coin toss is rather more complex

than this (Keller 1986; Diaconis et al. 2007), but the additional complications

that would arise from amore realisticmodel add nothing to the understanding

of independence.)

Consider a function that maps any possible initial spin speed for such

is in some metaphysical sense not “real” probability.
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a toss to the outcome produced. �e spin speeds are real numbers and the

outcome will be represented by an integer, zero for tails and one for heads.

(“Edge” is ignored.) I call this function the coin’s evolution function; a typical
form for the evolution function is shown in �gure 1. To help you see its form,

the area under the function is shaded.

v

1

Figure 1: �e evolution function for obtaining heads on a simple coin toss

with initial spin speed v

�e simple coin toss’s evolution function has two properties that it shares

with the evolution functions for many other classic gambling setups:

1. �e outcome varies from tails to heads and back again very quickly as

the value of the spin speed v changes, or in other words, there exist very

small changes in the initial spin speed of a coin that will change the

outcome of a toss from heads to tails and vice versa.

2. For any small but not-too-small interval of the spin speed v, the ratio
of values of v that produce heads to those that produce tails is the same

(in the case of the coin, one-to-one, that is, one-half). Or better: v can
be partitioned into small intervals, in each of which the ratio of heads-

to tails-producing values of v—the ratio of gray to white sections of the

graph—is the same.

I call the second of these two properties, which entails the �rst,microconstancy,
and I call the constant ratio of heads to tails the strike ratio for heads. (Formal
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de�nitions are given in Strevens (2003).)5

Many philosophers and scientists writing about the foundations of physi-

cal probability—von Kries, Poincaré, Hopf, and others—have thought that

the microconstancy of the coin’s evolution function with strike ratio one-half

explains the fact that the physical probability of heads is one-half.6 I fully

agree (Strevens 2011).

For my purposes in this paper, however, it is not necessary to take a

position on the metaphysics of the probability of heads. Rather, I make the

following assumptions. First, in any coin toss, there is a physical probability

distribution over the initial spin speed v. Second, the probability of heads is
equal to the probability that the initial speed distribution assigns to heads-

producing values of v.7
From these posits, it is possible to gain considerable insight into a problem

posed above: why are the outcomes of consecutive coin tosses independent

when they have a common causal origin, namely, a single human croupier?

�e key to the insight is a simple mathematical theorem that also spurred

the e�ort to ground physical probabilities in the property of microconstancy:

if the evolution function of some setup is microconstant with strike ratio p
for an outcome e, then any initial condition distribution, provided that it has

a certain smoothness property, will induce the same probability for e, equal
to p.

5. �e microconstancy of an evolution function is always relative to an outcome. It is also

relative to a measure, that is, a way of quantifying a setup’s initial conditions. �e correct

measure to use in the present framework is the measure with respect to which the probability

distribution over the setup’s initial conditions is stated. In what follows I take the initial

condition distribution, and thus the measure, as given.

6. For a guide to the older work, see von Plato (1983), and for more recent work, see

Diaconis et al. (2007). Reichenbach (2008) andHopf (1934, §9) brie�y explore the relationship

between microconstancy and independence, deriving a result much like that presented in

the next section. For the di�erences between the approaches taken by the earlier writers and

my own approach, see Strevens (2003, §2.A) and Strevens (2011).

7. In Strevens (2011) I endorse the second of these assumptions (in a back-handed way;

see the end of §4), but I also show how to ground a probability for heads without the �rst

assumption. In the present paper the �rst assumption is made for purely expository reasons.
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�e smoothness in question can be variously de�ned. One option is

as follows. Microconstancy consists in the initial condition space’s being

divisible into small contiguous (i.e., connected) regions each with the same

proportion of e-producing initial conditions. An initial condition distribution
will induce a physical probability approximately equal to this proportion if it is

approximately uniform—if the probability density is approximately constant—

across almost all of these small regions. Call this kind of smoothness, which

is su�cient but not necessary for the equality of strike ratio and probability,

macroperiodicity.
�e theorem—that any macroperiodic probability distribution over the

initial conditions of a microconstant setup induces a physical probability

for an outcome approximately equal to its strike ratio—is easily appreciated

in pictures. Figure 2 shows two roughly macroperiodic distributions over

a coin’s spin speed v; in each case, the area under the distribution that is

shaded gray, corresponding to the probability ascribed by the distribution

to heads-producing values of v, is approximately equal to the strike ratio for

heads of one-half. �is is because both probability densities are (except at

v

v

Figure 2: Di�erent macroperiodic distributions over initial spin speed v
induce the same probability for heads, equal to the strike ratio for heads
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the extremes) approximately constant across each gray/white pair, so that

gray and white contribute equal amounts to the total probability, yielding a

probability of roughly one-half for heads and one-half for tails. �e result

generalizes to setups with more than one initial condition variable (and in

fact can be somewhat strengthened; Strevens (2003, §2.25) states the stronger

result and provides formal proofs of all results stated here).8

You can see from the theorem (or the �gure) why two croupiers, physically

di�erent enough that they impose di�erent physical probability distributions

over the speeds with which they spin their coins, may nevertheless induce

equal probabilities for heads.9 Add a big empirical assumption to the mix—

that probability distributions over spin speed tend to be macroperiodic—and

you have an explanation why most tossed coins land heads about one-half of

the time. �ese explanations are discussed further in Strevens (2003), Strevens

(2011), and Strevens (2013), and also in the literature indirectly referenced in

note 6. Rather than expounding further details here, however, let me turn to

the question of the independence of consecutive tosses.

3. Consecutive Tosses by the Same Croupier

Consider two consecutive tosses by the same croupier. Why, despite their

common causal origin, are the outcomes of the tosses independent?

You might expect a failure of independence in the following sort of sce-

8. Here and in the later results concerning probabilistic independence the term “approxi-

mate” is called on to do some hedging: approximate macroperiodicity, approximate linearity,

approximate “microlinearity” (section 4), and so on. �e proofs I cite and the informal

arguments I give tend to assume that “approximate” means “negligible”. You might wonder

about cases where deviations from the ideal, though small, are not negligible. Do such

deviations have a tendency to get “blown up” to big deviations by, for example, the tossed

coin’s sensitivity to initial conditions? �ey do not: the process by which the deviations are

aggregated to produce the result in question (for example, a probability equal to a strike ratio)

is in e�ect a weighted averaging; consequently, the total deviation is the weighted average of

the individual deviations. �at means that the total deviation cannot ”blow up”, and indeed

will typically be much smaller than the larger individual deviations.

9. Or at least, probabilities that are almost equal.
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nario. Suppose that your croupier is sometimes manic, sometimes lethargic

in their coin-tossing. When manic, they tend to spin the coin faster; when

lethargic they tend to spin the coin more slowly. Consecutive spin speeds

produced by such a croupier will be correlated: a�er a fast spin, another fast

spin is more likely, and vice versa. �is correlation will show up in the joint

probability distribution representing the spin speeds of pairs of consecutive

tosses, as shown in �gure 3: as you can see, there is more probability heaped

around pairs of spins with similar magnitudes than pairs of spins with dis-

similar magnitudes. Are the outcomes of the croupier’s consecutive tosses

u

v
0

0

Figure 3: Joint density over the spin speeds u and v for two consecutive

tosses. �e magnitudes are correlated: a�er a fast toss, for example, another

fast toss is far more likely than than a slow toss. �is is represented by the

“ridge” running along the u = v diagonal.

correlated in the same way as the tosses’ spin speeds?

�ey are not. Indeed, because the joint density is macroperiodic, the

outcomes are not correlated at all; they are as independent as if the initial

spin speeds were independent—for example, the probability of obtaining two

heads in a row is, as independence requires, one-quarter. �e microconstancy

of the coin’s evolution function renders the correlation in the tosses’ initial

conditions irrelevant to their outcomes.
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Why? Performing two consecutive tosses can be thought of as a single

“composite” process that takes as its initial conditions the spin speeds of the two

tosses and produces as its outcome an ordered pair containing the outcomes of

the two tosses. If the evolution function for an individual toss is microconstant

with a strike ratio of one-half for heads, then the evolution function for (say)

a pair of heads on the composite setup is microconstant with a strike ratio

equal to the product of the strike ratios for the individual outcomes, namely,

one-quarter. Such an evolution function is shown in �gure 4; comparison of

this graph with �gure 1, or inspection of �gure 5, should make it clear why

the result holds.

u

v

Figure 4: Composite evolution function for the event of obtaining heads on

two consecutive coin tosses with spin speeds of u and v; the shaded regions

show values of u and v that produce two heads

It follows that, if the joint density over the initial conditions of the two

tosses is macroperiodic—like the density in �gure 3—then the probability for

any composite outcome is equal to the product of the probabilities for the

single outcomes, as required for independence.

�is result is entirely general. Given two microconstant setups, one with a

strike ratio of p for outcome e and the other with a strike ratio of q for outcome
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vv

u

u v

h(v)h(u)

u

vv

u

Figure 5: �e relation between an evolution function for a composite event

and the evolution functions for the individual events, showing that the mi-

croconstancy of the latter guarantees the microconstancy of the former with

a strike ratio equal to the product of the strike ratios for the individual events.

In this case the strike ratio for the event generated by initial condition u
(bottom evolution function) is one-third, the strike ratio for the event gener-

ated by v (right evolution function) is one-half, and the strike ratio for the

composite event (top le� evolution function) is one-sixth.
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f , the composite evolution function for pairs of trials on the setups will itself

be microconstant with a strike ratio for the composite outcome e f of pq.
(�e elementary proof is given in Strevens (2003), theorem 3.3 and illustrated

in �gure 5.) If the joint density is macroperiodic, then the probability for

the composite outcome is equal to the product of the probabilities for the

single outcomes: P(e f ) = P(e)P( f ).10 �at is necessary and su�cient for

independence.

�e condition required of the initial conditions by this independence

result—macroperiodicity of the joint distribution—is much weaker than in-

dependence.11 �us, you can have a certain degree of correlation between

the initial speeds of two consecutive coin tosses, induced perhaps by the

croupier’s state of mind or other ephemeral physiological or environmental

conditions, without losing independence in the outcomes. �e microcon-

stant dynamics in e�ect “screens o�” the correlation from the outcomes; it

is an independence-creating machine, nullifying the correlating power of a

common causal origin.12

10. Here I assume also, of course, that the densities for individual trials are macroperiodic,

so that the probabilities of outcomes of individual trials are equal to the outcomes’ strike

ratios.

11. Mathematically speaking, almost all macroperiodic joint densities represent some

degree of correlation between the events whose probabilities they encode; �gure 3 depicts

one example.

12. A reader asks: what if the joint initial condition distribution provides only marginal

probabilities, that is (roughly) average probabilities for pairs of consecutive spin speeds? �en

the independence result given above might hold but consecutive outcomes might not be

independent if the single-case probabilities deviated from the averages. For example, it might

be that the average probability of obtaining heads, given heads on the immediately preceding

toss, is as independence requires one-half, but that in some particular case the single-case

probability of heads immediately following heads is higher than one-half. (In some other

particular cases it would have to be lower than one-half in order to �x the one-half value

for the average.) �e answer to this question is that, as with any mathematical argument,

you get out what you put in. If you put in a marginal joint distribution, the argument

above gets you independence of the outcomes’ marginal probabilities only. If you put in a

distribution of single-case probabilities, you get independence of the outcomes’ single-case

probabilities. If single-case probabilities exist for the outcomes, they or something equivalent

presumably exist for the initial conditions (though see Strevens (2011)); the argument above
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�is observation goes a long way, I think, toward explaining why inde-

pendence is widespread even among events that share much of their causal

history. (More would have to be said, of course, to establish the existence of

microconstancy in a wide range of cases of interest.)

4. Colliding Coins

�e independence result for consecutive tosses stated in the previous section

assumes that, although the two trials in question may have a common causal

origin, they do not interact in any way once their initial spin speeds are

determined. Sometimes, however, independence is found even when such

interaction is present. �e probabilities of population genetics, for example,

represent the events over the span of a generation; within the generation,

there is in most cases considerable potential for interaction between the

gene-bearers. How can there be independence in spite of these causal cross-

currents?13

In the remainder of this paper, I start on an answer to this question by

examining a case in which there is a causal interaction between two tossed

coins: they collide in midair. In some circumstances of practical interest, I

show, the collision does not interfere with independence.

I will not be overly concerned with a realistic physics for collisions; the

should then be applied to these single-case probabilities for the pairs of consecutive spin

speeds—a su�cient condition for independence in that case being the macroperiodicity of

those probabilities’ distribution. If single-case probabilities do not exist for the outcomes—if

the only relevant probabilities are ensemble probabilities—then there can be a fact of the

matter about independence only at the ensemble level; thus, it is unreasonable to request the

demonstration of anything more.

13. In the treatment of tossed coins in this section, I begin with probabilities for caus-

ally isolated coin tosses—coins that do not collide—and show that most collisions do not

undermine independence. �at method cannot be applied directly to the probabilities of

population genetics, which are inherently extrinsic, and so do not exist in a causally isolated

form. �e way to demonstrate the independence of the population genetic probabilities is to

build them out of probabilities for smaller causal steps that do come in an isolated form, as

explained in Strevens (2003, chap. 4).
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aim is to survey various ways in which independence might be preserved

in interacting probabilistic setups generally rather than to zoom in on the

particular forms of preservation germane to spinning metal discs. I will also

suppose at �rst for simplicity’s sake that there are no frictional forces on the

coins, so that they spin at a constant speed before and a�er any collision. (�is

assumption will be relaxed later.) As a consequence of this assumption, the

evolution function for double heads has the perfectly regular form shown at

the top of �gure 6 rather than the form shown in �gure 4.

u

v

Figure 6: Evolution function for the outcome of double heads on two non-

colliding coins with no friction

Two coins are tossed simultaneously. Partway through their �ight they

collide. What next? Perhaps they stop each other’s spinning dead, and fall to

the ground without any further revolutions. �e e�ect of the collision, then,

is simply to reduce the interval of time for which the coins are allowed to spin

before the outcomes of the tosses are read o� from their positions. If they

collide halfway through their allotted spin time, for example, the e�ect is the

same as if the allotted spin time were half of what it actually is.

What you have, then, is a case that is formally identical to the case of
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non-interacting consecutive tosses analyzed in the previous section. You

might think that no more needs to be said: the outcomes of consecutive tosses

that do not interact are independent, so the outcomes of tosses that collide in

the way just described are also independent.

�at would be a little too quick, however. Because the collision reduces

the time for which the coins spin, it increases the width of the gray and white

stripes in the relevant evolution functions; you can see the e�ect by comparing

the evolution function for double heads without the collision (�gure 6) to the

evolution function for double heads with the collision (�gure 7). If indepen-

dence is to hold in spite of the collision, the initial spin speed distributionmust

be macroperiodic relative to this new evolution function as well as to the old,

which means that it needs to be approximately uniform over larger regions

than it needed to be to ensure the independence of consecutive non-colliding

tosses. In this particular case, it needs to be uniform over regions that are

something like four times the size of the regions in the non-colliding case.

u

v

Figure 7: Evolution function for the outcome of double heads on two coins

that collide in midair stopping each other dead

Let me develop a terminology for talking about this issue succinctly. Say
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that the strength of an evolution function’s microconstancy is inversely pro-

portional to the size of the small areas of constant gray-to-white ratio that

make it microconstant. �e evolution function for the non-colliding coins is

considerably stronger in its microconstancy, then, than the evolution func-

tion for the colliding coins, because the former function can be divided into

regions of constant gray-to-white ratio that are considerably smaller than the

corresponding regions for the latter function.14

Likewise, say that the strength of an initial condition distribution’s ma-

croperiodicity is proportional to the size of the areas over which it is ap-

proximately uniform. �e “smoother” or “�atter” it is in the small, then, the

stronger its macroperiodicity.

To return to the colliding coins, then: the e�ect of a collision that stops

the coins spinning is to weaken the microconstancy of (that is, diminish the

strength of the microconstancy of) the evolution functions that determine the

probability of double heads and so on. Such a collision will fail to undermine

the independence of the tosses if the corresponding initial condition distribu-

tion is strong enough to take up the slack. But if it is not very strong, then

the collision will expose some of the high-level correlation between the coins’

initial spin speeds (if such correlation exists), so undermining independence.

�e earlier in the toss the coins collide, the more the microconstancy of

the corresponding evolution functions is weakened. �us the following loose

rule of thumb can be promulgated: a collision that brings the colliding coins

spinning to a dead stop is more likely to undermine independence the earlier

it occurs; accordingly, a relatively “late” collision of this sort will in many cases

not interfere with independence. �is o�ers a �rst example, then, of causal

interactions that preserve independence.

14. �is informal de�nition is imprecise: if the areas of constant ratio are of di�erent sizes,

for example, it does not specify whether strength is determined by taking the largest size, the

mean size, or something else. But given the informal use to which I put the notion in what

follows, there is no real bene�t to precisifying—though a fuller treatment of independence

would certainly do so.
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Useful though this conclusion will be in what follows, the case itself is

of limited intrinsic interest, as the causal interaction in question—the spin-

stopping collision—does not induce any sort of correlation between the states

of the coins. Let me next show you a case of a collision that does create such a

correlation and that as a result completely undermines the independence of

the outcomes of the tossed coins.

Suppose that the colliding coins �y toward one another spinning in op-

posite directions and that their leading edges collide with the same perfectly

elastic dynamics as an idealized collision between billiard balls, so that they

simply swap spin speeds. (Again, the realism of the physics is not so important

here.) Suppose that this collision occurs halfway through the toss. In that

case, each coin will spin at its original speed for half of the allotted time, and

then at the other coin’s original speed and in the opposite direction for the

other half of the allotted time. If the initial speeds of the two coins are u and v,
then, their mean speeds over the course of the toss are respectively u/2 − v/2
and v/2 − u/2. �e magnitudes of the two mean speeds are, consequently,

identical, which means that as a result of the collision the coins make exactly

the same number of revolutions before landing. �eir outcomes will be exactly

correlated, then: if you know one, you will be able to predict the other with

certainty.

In the remainder of this paper, I ask under what circumstances collisions

of this sort—collisions in which the mean speed of each colliding coin is

a non-trivial function of both coins’ initial speeds—destroy independence.

It turns out that in a wide range of cases, independence is preserved. �e

present case is, then, far from representative of the e�ect of causal commerce

on independence.

Consider next a case in which the coins collide as above halfway through

the allotted time but in which they slow one another down rather than entirely

exchanging velocities. Suppose, in particular (and without worrying about

getting the physics exactly right), that as a result of the collision the new speeds
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of the two coins are determined by their initial speeds u and v as follows:

u′ = u − v/2; v′ = v − u/2 (1)

�e resulting evolution function for double heads is shown in �gure 8. You

u

v

Figure 8: Evolution function for double heads with a linear collision halfway

through the toss

can see right away that this new function is microconstant with a strike ratio

of one-quarter, as required for independence. It seems, then, that the collision

preserves independence, even as it mixes the spin speeds.

Why does the collision not undermine independence? More exactly, why

does it preserve the microconstancy of the evolution function? �ink of the

collision as transforming the old, collision-free evolution function into a new

evolution function that re�ects the dynamics of the collision. In this case,

the evolution function in �gure 6 is transformed into the evolution function

in �gure 8. Now consider any small region in the transformed evolution

function. I will show that, in the right conditions, the ratio of gray to white in

such a region is equal to the strike ratio for the old function. �us the new

function is microconstant with the same strike ratio as the old function, as

independence requires.
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�e small region in the new evolution function is a transformation of a

region in the old function—the region that is its “inverse image”. If the old

evolution function is microconstant and the inverse image is not too small,

then the ratio of gray to white in the inverse image is equal to the old function’s

strike ratio. Because the collision is linear (and invertible), the new evolution

function is a linear function of the old function, and in particular the small

region we are looking at is a linear transformation of its inverse image. Linear

functions preserve proportions (if invertible), so the proportion of gray in

the small region in the new evolution function is equal to the proportion of

gray in its inverse image, thus to the strike ratio of the old evolution function,

as desired.

�e preservation of independence by the collision above is explained, then,

by the collision’s linearity. Also necessary for the explanation is, as assumed

in the previous paragraph, that a small region’s inverse image is not too small

(or else its gray-to-white ratio might not re�ect the old evolution function’s

strike ratio). What we want, roughly, is that the size of the inverse image is no

smaller, or at least not much smaller, than the size of the region onto which it

maps. �is means that the transformation is not “in�ationary”: it does not

in�ate small regions in the old evolution function into much larger regions in

the new evolution function.

�ere is some room for maneuver. A mildly in�ationary transformation

will yield a new evolution function that is microconstant, but more weakly

than the old evolution function, in the sense of weakness de�ned above: the

regions of constant gray-to-white ratio will be larger in the new evolution

function than in the old. As you saw in the case of the collision that stopped

the coins dead, this is not disastrous for independence provided that the initial

condition distribution has strong enough macroperiodicity to take up the

slack. If we have reasonably strong macroperiodicity, then, we can allow a

certain degree of in�ation. (In fact, the collision represented by equation 1

and depicted in �gure 8 is mildly in�ationary: a region in the old evolution
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function is mapped to a region in the new evolution function that is 1/15th

larger. You can see for yourself that this is not a big deal.)

�e outcomes of colliding coin tosses will be independent, then, if the

collision between the coins e�ects a transformation of evolution functions

that is (invertibly) linear and that is not too in�ationary. (�e “spin exchange”

transformation considered above that e�ected an exact correlation between

the coins is linear but non-invertible.)

�is generalization about independence can be strengthened to apply to a

wide range of non-linear transformations, namely, the transformations that

I callmicrolinear. A transformation is microlinear if its e�ect on any small

region can be approximated by a linear transformation. A one-to-one mi-

crolinear transformation will therefore preserve gray-to-white ratios, and so

the informal argument for the microconstancy of the new evolution function

given above will go through for microlinear transformations, provided that

they are not too in�ationary.15 By way of illustration, �gure 9 shows an exam-

ple of the (approximately) microconstancy-preserving e�ect of a nonlinear

but microlinear collision.

You might ask: Surely the collision in most cases establishes a correlation

between the colliding coins’ spin speeds? Where does that correlation go?

Why does it not undermine the independence of the tosses’ outcomes?16 Here

is the answer. A collision between two coins does typically correlate the coins’

spin speeds. But o�en, it establishes only the sort of high-level correlation

shown in �gure 3. It correlates the speeds, then, but only in a way that the

evolution functions’ microconstancy renders probabilistically irrelevant, for

15. �at the transformation of evolution functions is one-to-one is guaranteed by linearity

but not by microlinearity. However, because the transformation in question is a one-to-one

function of the inverse of the transformation that maps pre-collision speeds onto post-

collision speeds, we can be sure that the sort of evolution function transformations we are

talking about are one-to-one: if they were not, the spin speed transformation would not be

well-de�ned, or perhaps I should say, would not be deterministic.

16. �anks to Jossi Berkovitz for raising this question. �e loose generalization stated in

this paragraph has its foundation in the results proved in Strevens (2003), §3.B7.

22



u

v

Figure 9: An evolution function for double heads transformed by a non-

linear but microlinear collision. Microconstancy is (approximately) pre-

served.

the reasons given in section 3, to the outcomes. More speci�cally, it can be

shown that, if the joint distribution of two colliding coins’ initial spin speeds

before a collision is macroperiodic, and if the collision’s dynamics are of the

sort speci�ed in the preceding paragraphs—if they e�ect a transformation of

the evolution function that is microlinear and not too in�ationary—then the

joint density incorporating the e�ect of the collision is also macroperiodic.

�us the kind of correlation e�ected by a microlinear, not-too-de�ationary

collision is the kind of correlation that, given a microconstant dynamics,

makes no di�erence to the probabilities of the outcomes, unconditional or

conditional, and so has no impact on probabilistic independence.

∗ ∗ ∗

It would be good to have a formal result encompassing the claims made in

this section. Further, it would be good to have a formal result couched, not in

terms of the transformation of the evolution functions e�ected by the collision,

but in terms of the transformation of spin speeds e�ected by the collision, so
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that we can look at a collision dynamics such as that represented by equation 1

and directly judge whether or not it undermines independence.

Such a result may be found in Strevens (2003), §3.6 and §3.B6; I state it

here without proof:

�e independence of outcomes produced by simultaneous microcon-

stant trials (with macroperiodic individual and joint initial condition

distributions) is not undermined by a causal interaction, provided

that (a) the interaction occurs at the beginning of the trial, and (b) the

interaction can be represented by an instantaneous, non-de�ationary,

microlinear transformation of the initial conditions.

You will understand the signi�cance of microlinearity in the light of the discus-

sion above. You might wonder about the requirement that the interaction be

non-de�ationary, when what was required in the informal discussion above

was that the transformation of evolution functions e�ected by the interaction

be non-in�ationary (where de�ation and in�ation are contraries). �e reason

for this inversion is that the transformation of old to new spin speeds (more

generally, initial conditions) stands to the transformation of old to new evolu-

tion functions as a function to its inverse. One will tend to be de�ationary

if the other is in�ationary (a tendency that will be explored more rigorously

below).

�e theorem is limited in two ways. First, it does not allow for mild

de�ation (hence mild in�ation in the evolution function transformation).

But you will already see how this limitation can be relaxed: a little bit of

de�ation in the spin speed transformation can be allowed provided that the

macroperiodicity of the initial spin speed distribution is strong enough to

compensate.

�e more disappointing limitation of the theorem is that it applies only

to interactions that occur at the very beginning of a trial, thus only to those
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tossed coins that collide at the �rst instant they take �ight.17 In the next

section, I expand the result to collisions occurring at any point in the trial,

so deriving a rather general set of conditions su�cient for independence

preservation in colliding tossed coins and other similar systems.

5. Mid-Toss Collisions

�e theorem stated above guarantees that the independence of simultaneously

tossed coins will not be undermined by a collision if that collision e�ects a

transformation of the initial conditions that is non-de�ationary, microlinear,

and that occurs at the �rst instant a�er the coins are tossed. My aim in this

section is to remove the last restriction, showing that the result holds for a

wide range of interactions at any point in the trial.

Since I am now moving into a more formal mode, some more formal

de�nitions: A transformation is non-de�ationary if it transforms any region

into a region of equal or greater size. A simple example is y = 2x, which
doubles the size of any interval. A transformation ismicrolinear if it can be

approximated by a mosaic of linear transformations, or slightly more strongly,

if for any small, contiguous region of the transformation’s domain, there exists

a linear transformation that has an approximately equivalent e�ect on the

region (mapping the same points to roughly the same points). Microlinearity

is of course relative to some standard for what is “micro”, that is, for what

counts as a small region. In the theorem, the standard is set by the relevant

evolution functions’ microconstancy: loosely speaking, a region is small if it

is the same size, or smaller, than the regions of constant proportion in virtue

of which the evolution functions are microconstant.18

17. For technical reasons, this created no problems in Strevens (2003).

18. More technically, the microlinearity of a transformation can be de�ned as relative to a

partition of its domain into connected sets: it is microlinear if it is approximately linear over

any member of the partition. What the theorem above requires is microlinearity relative to a

partition into sets of equal strike ratio.
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�e structure of this section’s argument is as follows: I show that under

certain conditions a microlinear, non-de�ationary transformation of a coin’s

spin speed partway through a toss is equivalent to a di�erent transformation

on its initial spin speed that is also microlinear and non-de�ationary. Since

the latter sort of transformation preserves independence, so does the former.

Suppose, then, that two coins are tossed, with spin speeds of u and v
respectively, in such a way that they both spin for time T . At some time t1 less
than T , the coins collide, e�ecting a change in their spin speeds (and no other

relevant physical changes). As above, I assume that a coin’s spin speed does

not signi�cantly decrease over the course of the toss. (�is is a signi�cant

assumption; it will eventually be dropped.)

Let me focus on the dynamics of the �rst coin. Supposing that spin speeds

are represented in revolutions per time unit, the number of revolutions made

by the �rst coin at the time of the collision t1 is t1u. If the speed of the coin is

altered at t1 to u′, then the number of revolutions the coin makes between t1
and T is t2u′, where t2 = T − t1. �us the total number of revolutions n made

by the coin, which determines the outcome of this toss, is t2u′ + t1u.
I will �rst consider the case where the transformation e�ected by the

interaction is linear, and so can be represented as follows:

u′ = au + bv + c

for some a, b, and c.19 �e total number of revolutions made by the coin is

the sum of the revolutions made before the collision and the revolutions made

a�er the collision:

n = t2u′ + t1u

= t2(au + bv + c) + t1u

= (at2 + t1)u + (bt2)v + ct2.

19. A non-zero value for c would be physically peculiar, but since it is easy to handle, I do

not rule it out here.
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My aim is to �nd a linear or linear plus constant transformation of u and v
that yields the same formula for n when applied to u at the very beginning of

the toss. �is new transformation, if it exists, has the form:

du + ev + f .

If a transformation of this form is applied at the beginning of a toss, the total

number of revolutions made by the coin is:

n = T(du + ev + f )

= dTu + eTv + f T .

Such a transformation is equivalent to the actual transformation if there are

values of d, e, and f for which these two formulas for n are equivalent. Clearly,

there are:

d = (at2 + t1)/T

e = bt2/T

f = ct2/T .

So the e�ect of a linear interaction on u partway through a coin toss is equiv-

alent to the e�ect of a linear interaction—though a di�erent one—at the

beginning of the toss. �e same is true for v. �us the transformation of u
and v partway through the toss is equivalent to a linear transformation of u
and v at the beginning of the toss.

Under what conditions will this equivalent interaction at the beginning

of the toss be non-de�ationary? �e “Further Proofs” section at the end

of this paper shows that, provided certain physically plausible conditions

hold, if the transformation e�ected by the actual interaction of the coins is

non-de�ationary, then the equivalent beginning-of-the-toss transformation

is also non-de�ationary. It is also shown that if the transformation is de�a-

tionary, then the equivalent beginning-of-the-toss transformation is no more

de�ationary.
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Now consider the case in which the transformation e�ected by the inter-

action is microlinear, that is, linear over any small, contiguous region of its

domain. From the reasoning above, over any such region, the e�ect of the

transformation is equivalent to a di�erent linear interaction at the beginning

of the trial applied to the same region.

It follows that the e�ect of a microlinear interaction partway through a

coin toss, which is made up of di�erent linear interactions over di�erent small

regions, is approximately equivalent to the e�ect of a corresponding set of

linear interactions over the same regions at the beginning of a coin toss, thus

is equivalent to a microlinear interaction at the beginning of the toss. Further,

provided that the mid-toss interaction is non-de�ationary, the equivalent

beginning-of-toss interaction is also non-de�ationary. Such an interaction

will therefore preserve independence.

If the mid-toss interaction is de�ationary, the equivalent beginning-of-

toss interaction is no more de�ationary; thus, if the mid-toss interaction’s

de�ation is mild and the initial condition distribution’s macroperiodicity is

strong, independence will be preserved in this case too.

�e argument as presented so far makes the rather narrow (if in many

cases realistic) assumption that a coin’s spin speed remains e�ectively constant,

except where it is a�ected by collisions, from the beginning to the end of the

toss. �e assumption may, however, be relaxed, as I will now explain.

�e principal part of the derivation above is the demonstration that a

linear transformation of spin speeds partway through a toss is equivalent to

a linear transformation at the beginning of the toss. Inspection of the proof

shows that what matters for the derivation is that the formula for the number

of revolutions made by the coin over a speci�ed period of time, given an

initial speed of u, is a linear function of u. �is is true provided that the spin

speed of the coin at any time t, given an initial speed of u, can be written

f (t)u (where f (t) need not itself be linear), since the number of revolutions

made over a period of length t is then F(t)u, where F(t) = ∫ t
0
f (x) dx. To
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generalize the proof above, then, simply substitute F(t1) for t1, F(t2) for t2,
and F(T) for T . �e linearity condition is satis�ed by a number of possible

dynamics for spin speed, such as exponential decay (on which the speed at

time t, given an initial speed u, is ue−kt).
Two other issues must be addressed to secure independence in the case

where the coin’s spin speed changes with time. First, in order to have micro-

linearity of the beginning-of-the-toss transformation, it is not enough that

the actual interaction transformation be microlinear, that is, linear over any

small region of the speed space. It must be linear over the inverse image of
any such region with respect to the speed evolution function (the function

that determines how speed changes with time). A su�cient condition for this,

given the microlinearity of the actual interaction transformation, is that the

inverse image of any region of the speed space be at least as large as that region,

because then we are guaranteed linearity over these “at least as large” sets,

hence microlinearity. �is su�cient condition amounts to the requirement

that the speed evolution function be non-in�ationary. A su�cient condi-

tion in turn for non-in�ation is that f (t) be a non-increasing function—an

eminently reasonable supposition for a tossed coin.

�e second condition for independence is that the beginning-of-the-toss

transformation should be non-de�ationary (or that if the transformation

is mildly de�ationary, the initial condition distribution’s macroperiodicity

should be strong enough to compensate). �e “Further Proofs” show that

f (t)’s being non-increasing is su�cient for the satisfaction of these conditions

(given the other conditions already in place).

In short, then, the independence result can be extended to any case in

which the speed evolution function is linear in the speed and non-in�ationary.

You can likely see the prospect for further generalization to speed evolution

functions that are microlinear, but let me leave that to another time.
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6. Conclusions

�anks to microconstancy, there is ample independence to be found among

the outcomes of coin tosses. First, microconstancy renders irrelevant many

correlations due to common causal origins, as when the initial spins of consec-

utive tosses are correlated due to the passing moods of the croupier. Second,

microconstancy protects independence against a range of causal interactions

between the coins once tossed, in particular those that are non-de�ationary

(or not too de�ationary) and microlinear.20

�e interest of the results for coins depends, of course, on the extent of

microconstancy, and in particular, on the question whether microconstancy

is to be found in the kinds of systems concerning which statistical models in

science make broad assumptions of independence.

I have argued for the prevalence of microconstancy elsewhere (Strevens

2003). Even so, the results referenced and developed in this paper at best

constitute only the beginnings of an extensive and important philosophical

project, of understanding the reasons for physical probabilistic independence

among causally connected outcomes. Some further thoughts about causa-

tion and independence can be found in the material supplementary to my

book Bigger than Chaos posted at www.strevens.org/chaos/ under “Additions”.
�ose programmatic remarks show just how much work remains to be done.

Further Proofs: Su�cient Conditions for Non-De�ation

I will show that if a midair collision between two tossed coins e�ects a non-

de�ationary linear transformation of the spin speeds, then the equivalent

transformation at the beginning of the tosses will also be non-de�ationary,

provided that some additional, physically plausible conditions hold. I will

20. Two additional physically plausible assumptions are made in the course of the deriva-

tion (see the “Further Proofs”): a and д are positive and b and h have the same sign.
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also show that under the same conditions, a de�ationary mid-toss collision is

equivalent to a beginning-of-toss transformation that is no more de�ationary.

Some new notation will simplify the algebra. De�ne t̂1 and t̂2 as the
proportions of the total spin time that elapse before and a�er the collision, so

that

t̂1 = t1/T and t̂2 = t2/T .

�en the coe�cients d and e of the beginning-of-the-toss transformation of

u equivalent to the actual interaction can be written

d = at̂2 + t̂1

e = bt̂2.

�e same notation can be used for the coe�cients of the beginning-of-the-

toss transformation of v. If the actual linear transformation of v e�ected by

the collision is:

v′ = дv + hu + i

then the beginning-of-toss transformation of v equivalent to the actual inter-
action is

(д t̂2 + t̂1)v + ht̂2u + i t̂2.

Consider non-de�ationary collision dynamics �rst. �e beginning-of-

the-toss transformation—the transformation on the u × v space—is non-

de�ationary just in case the absolute value of its determinant is greater than

or equal to 1. Let me simplify matters by assuming that the determinant is

positive; non-de�ation in that case requires that the determinant is greater

than or equal to 1 (otherwise, run the following arguments with strategically

placed negation operators).

�e beginning-of-toss transformation’s determinant is

det
⎛

⎝

at̂2 + t̂1 bt̂2
ht̂2 д t̂2 + t̂1

⎞

⎠

= aд(t̂2)2 + at̂1 t̂2 + д t̂1 t̂2 + (t̂1)2 − bh(t̂2)2
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= (aд − bh)(t̂2)2 +
(a + д)

2
2t̂1 t̂2 + (t̂1)2.

Since (t̂2)2+2t̂1 t̂2+(t̂1)2 = (t̂1+ t̂2)2 = 1, a su�cient condition for the determi-

nant to be greater than or equal to 1 is that the coe�cients of (t̂2)2 and 2t̂1 t̂2
in the above expression be greater than or equal to 1, that is, that

1. aд − bh ≥ 1, and

2. a + д ≥ 2.

�e quantity aд − bh is the determinant of the actual transformation, that is,

the transformation actually e�ected by the midair collision partway through

the toss; it is greater than or equal to 1 just in case the original transformation

is non-de�ationary.

If it is assumed that a and д are positive (i.e., a coin’s pre-interaction

spin speed makes a positive rather than a negative contribution to its post-

interaction spin speed) and that (because of physical symmetry) the signs

of b and h are the same, then (1) entails that aд ≥ 1, which in turn entails

(2). Under these assumptions, then, if the interaction transformation partway

through the toss is non-de�ationary, its equivalent at the beginning of the

toss is also non-de�ationary.

What if the mid-toss collision transformation is de�ationary? Its degree

of de�ation is proportional to its determinant d, the absolute value of which
will be less than one. Assume as before for expository purposes that d is

positive. �en it can be shown that under the same conditions assumed in

the previous paragraph, the determinant of the equivalent beginning-of-toss

transformation is no less than d, so that the equivalent beginning-of-toss

transformation is no more de�ationary than the mid-toss transformation.

Proof: A su�cient condition for the beginning-of-toss determinant to be

greater than or equal to d can be read o� the argument above (using all

variable names in the same way):

1. aд − bh ≥ d, and

32



2. a + д ≥ 2d.

Since d is by de�nition equal to aд − bh, condition (1) is always satis�ed.

Supposing, as before, that a and д are positive and that b and h have the same

sign so that bh is positive, condition (2) is also satis�ed (reasoning omitted).

Next consider the case where the coin’s spin speed changes signi�cantly

over time. As in the main text, I assume that the speed at any time is a linear

function of the initial speed: there exists a function f (t) (not necessarily
linear) such that, a�er time t, the speed of a coin with initial speed u will be

f (t)u. Rede�ne t̂1 and t̂2 so that

t̂1 = F(t1)/F(T) and t̂2 = F(t2)/F(T).

where F(t) = ∫ t
0
f (x) dx. �en the relevant beginning-of-the-toss transfor-

mation can be written just as I have written it above.

It can no longer be assumed that t̂1 + t̂2 = 1. However, if as I suggested

in the main text f (t) is a non-increasing function then as demonstrated

below, t̂1 + t̂2 ≥ 1, which is su�cient for the above reasoning to apply to the

more general case, so that if the other conditions stated above apply, then

(a) if the actual collision transformation is non-de�ationary, the equivalent

beginning-of-the-toss transformation is also non-de�ationary, and (b) if the

actual collision transformation is de�ationary, the equivalent beginning-of-

the-toss transformation is no more de�ationary.

To show that t̂1 + t̂2 ≥ 1: because f (t) is non-increasing, for b > 0

∫ a

0

f (t) dt ≥ ∫ b+a

b
f (t) dt.

It follows from the de�nition of F(t) that

t̂1 + t̂2 =
F(t1) + F(t2)

F(T)

=

∫ t1
0

f (t) dt + ∫ t2
0

f (t) dt

∫ T
0

f (t) dt
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≥

∫ t1
0

f (t) dt + ∫ T
t1 f (t) dt

∫ T
0

f (t) dt

≥ 1.
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