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The weather report says that the chance of a hurricane arriving later to-
day is 90%. Forewarned is forearmed: expecting a hurricane, before leaving
home you pack your hurricane lantern.

Probability enters into this scenario twice, first in the form of a physical
probability, sometimes called a chance, quantifying certain aspects of the
local weather that make a hurricane very likely, and second in the form of
an epistemic probability capturing a certain attitude to the proposition that
a hurricane will strike, in this case one of considerable confidence.

It is not immediately obvious that these two probabilities are two differ-
ent kinds of thing, but a prima facie case can be made for their distinctness
by observing that they can vary independently of one another: for example,
if the meteorologists are mistaken, the chance of a hurricane may be very
low though both they and I am confident that one is on its way.

Most philosophers now believe that the apparent distinctness is real.
They are therefore also inclined to say that my belief that the physical prob-
ability of a hurricane is very high is distinct from my high epistemic proba-
bility for a hurricane. There must be some principle of inference that takes
me from one to the other, a principle that dictates the epistemic impact
of the physical probabilities—or at least, of my beliefs about the physical
probabilities—telling me, in the usual cases, to expect what is physically

probable and not what is physically improbable. I call such a principle, me-



diating as it does between two different kinds of probability, a probability
coordination principle.

The three principal topics of this entry will be, in the order consid-
ered, epistemic probability, physical probability, and probability coordina-
tion. Two preliminary sections will discuss the common mathematical basis

of epistemic and physical probability and the classical notion of probability.

The Mathematical Basis

What all probabilities, epistemic and physical, have in common is a certain
mathematical structure. The most important elements of this structure are
contained in the axioms of probability, which may be paraphrased as fol-

lows:

1. All probabilities are real numbers between zero and one inclusive (for

any proposition a, 0 < P(a) < 1),

2. The probability of an inconsistent proposition is zero; the probability

of a logical truth, or tautology, is one.

3. The probability that either one or the other of two mutually exclu-
sive propositions is true is equal to the sum of the probabilities of the
individual propositions. (Two propositions are mutually exclusive if
they cannot both be true; the cannot is interpreted as a matter of logi-
cal consistency, so that the axiom says that for any two propositions a
and b such thata - —b, P(a VvV b) = P(a) + P(b).)

The axioms as stated here assume that probabilities are attached to pro-
positions, such as the proposition that A hurricane will strike New York at
some time on the afternoon of 1/20/05. The axioms may also be stated in a
way that assumes that probabilities attach to events. It is more natural to

attach epistemic probabilities to propositions and physical probabilities to



events, but when the two kinds of probability are discussed side by side it is
less confusing, and quite tolerable, to take propositions as the primary bear-
ers of both kinds of probability. Nothing important is thought to turn on
the choice.

The three axioms of probability, though simple, may be used to prove
a wide range of interesting and strong mathematical theorems. Because all
probabilities conform to the axioms, all probabilities conform to the the-
orems. It is possible, then, to do significant work on probability without
presupposing either epistemic or physical probability as your subject matter,
let alone some particular construal of either variety. Such work is for the
most part the province of mathematicians.

Philosophical work on probability may also be mathematical, but is most
often directed to one or the other variety of probability, usually attempting
a philosophical analysis of probability statements made in a certain vein, for
example, of probability claims made in quantum mechanics or evolutionary
biology (both apparently claims about physical probability) or of probability
claims made in statistical testing or decision theory (both apparently claims
about epistemic probability).

Two important notions encountered in statements of the mathematical
behavior of probability are conditional probability and probabilistic indepen-
dence. Both are introduced into the mathematics of probability by way of
definitions, not additional axioms, so neither adds anything to the content

of the mathematics.

Conditional Probability The probability of a proposition a conditional on
another proposition b, written P(a|b), is defined to be P(ab)/P(b), where
ab is the conjunction of a and b. (The conditional probability is undefined
when the probability of b is zero.) For example, the probability of obtaining
three heads on three successive tosses of a coin, conditional on the first toss
yielding heads, is the probability of obtaining three heads in a row, namely
one eighth, divided by the probability of obtaining heads on the first coin,



namely one half—in other words, one quarter.

Some writers suggest taking conditional probability as the basis for all
of probability mathematics, a move that allows, among other things, the
possibility of conditional probabilities that are well defined even when the
probabilities of the propositions conditionalized on are zero (Hajek 2003).
On this view, the mathematical posit stated above linking conditional and
unconditional probabilities is reinterpreted as an additional axiom.

The act of conditionalization may be used to create an entirely new prob-
ability distribution. Given an old probability distribution P(-) and a pro-
position b, the function P(:|b) is provably also, mathematically speaking, a
probability distribution. If k is a proposition stating all of your background
knowledge, for example, then a new probability distribution P(:|k) can be
formed by conditionalizing on this background knowledge, a distribution
that gives, intuitively, the probabilities for everything once your background
knowledge is taken into account. This fact is especially important in the

context of epistemic probability.

Probabilistic Independence 'Two propositions a and b are probabilistically
independent just in case P(ab) = P(a)P(b). When the probability of b is
non-zero, this is equivalent to P(a|b) = P(a), or in intuitive terms, the claim
that the truth or otherwise of b has no impact on the probability of a.

Several of the most important and powerful theorems in probability
mathematics make independence assumptions. The theorem of most use
to philosophers is the law of large numbers. There are in fact several the-
orems of this name; the most familiar say, very roughly, that when a large,
finite set of propositions are independent, but have the same probability p,
then the proportion of propositions that turn out to be true will, with high
probability, be approximately equal to p. (The generalization to countably
infinite sets of propositions is easy if the propositions are ordered; substitute
limiting frequency for proportion.)

For example, the propositions might all be of the form Coin toss x will



produce heads, where the x stands for any one of a number of different tosses
of the same coin. If the probability of each of the propositions is one half,
then the law of large numbers says, in effect, that provided the tosses are
independent, it is very likely that about one half will yield heads.

It is natural to interpret the probabilities in this example as physical
probabilities, but the law of large numbers applies equally to any kind of
probability, provided that independence holds. There are, in fact, many
variants of the law of large numbers, but the details are beyond the scope

of this entry.

Classical Probability

The development of the mathematics, and then the philosophy, of probabil-
ity was spurred to a perhaps surprising degree by an interest, both practical
and theoretical, in the properties of simple gambling devices such as rolled
dice, tossed coins, and shuffled cards. Though there was from the beginning
a great enthusiasm for extending the dominion of the “empire of chance”
to the ends of the earth, gambling devices were—and to some extent are
still—the paradigmatic chance setups.

A striking feature of gambling devices is their probabilistic transparency:
the discerning eye can “read oft” their outcomes’ physical probabilities from
various physical symmetries of the device itself, seeing in the bilateral sym-
metry of the tossed coin a probability of one half each for heads and tails,
or in the six-way symmetry of the die a probability of one sixth that any
particular face is uppermost at the end of a roll (Strevens 1998).

The classical definition of probability, paramount from the time of Leib-
niz to the time of Laplace (the late seventeenth century to the early nine-
teenth century) takes its inspiration from the alignment of probability with
symmetry. The best-known formulation of the classical account is due to

Laplace:



The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is
to say, to such as we may be equally undecided about in regard
to their existence, and in determining the number of cases fa-
vorable to the event whose probability is sought. The ratio of
this number to that of all the cases possible is the measure of
this probability, which is thus simply a fraction whose numera-
tor is the number of favorable cases and whose denominator is

the number of all the cases possible (Laplace 1902, 6-7).

As many commentators have noted, this formulation, typical of the clas-
sical probabilists, appears to involve two parallel definitions, the first based
on the notion of equal possibility and the second on the notion of equal un-
decidedness. Laplace’s relation of equal possibility between two cases prob-
ably ought to be understood as picking out a certain physical symmetry in
virtue of which the cases have equal physical probabilities. All classical prob-
abilities, on the equal possibility definition, have their basis in such physical
symmetries, and so would seem to be physical probabilities. The relation
of equal undecidedness between two cases refers to some sort of epistemic
symmetry, though perhaps one founded in the physical facts. A probability
that has its basis in undecidedness would seem to be, by its very nature, an
epistemic probability. Classical probability, then, is at the same time a kind
of physical probability and a kind of epistemic probability.

This dual nature, historians have argued, is quite intentional (Hacking
1975; Daston 1988). In its epistemic guise, classical probability can be called
on to do work not normally thought to lie within the province of an objec-
tive notion of probability, such as measuring the reliability of testimony, the
strength of evidence for a scientific hypothesis, or participating in decision-
theoretic arguments such as Pascal’s famous wager on the existence of God.
In its physical guise, classical probability is able to cloak itself in the aura of

unrevisability and reality that attaches to the gambling probabilities such as



the one half probability of heads.

The classical definition could not last. Gradually, it came to be acknowl-
edged that although the epistemic probabilities may, or at least ought to,
shadow the physical probabilities wherever the latter are found, they play
a number of roles in which there is no physical probability, nor anything
with the same objective status as a physical probability, to mimic. The clas-
sical definition was split into its two natural parts, and distinct notions of
physical and epistemic probability allowed to find their separate ways in the
world.

At first, in the middle and later nineteenth century, physical probability
commanded attention almost to the exclusion of its epistemic counterpart.
Developments in social science, due to Quetelet, in statistical physics, due
to Maxwell and Boltzmann, and eventually (around 1930) in the synthesis
of evolutionary biology and genetics, due to Fisher and many others, turned
on the successful deployment of physical probability distributions.

Beginning in the early twentieth century, however, epistemic probabil-
ity came into its own, freeing itself over the decades from what came to be
seen as the classical probabilists’ futile attempt to provide strict guidelines
dictating unique rational epistemic probabilities in every situation.

Modern philosophy remade itself in the twentieth century, imposing a
historical horizon near the year 1900. The story of the interpretation of
probability is often told beginning around that year, with the result that the
development of epistemic probability, and “logical probability” in particu-

lar, comes first—a convention that will be followed here.

Epistemic Probability

Epistemic probability takes two compatible forms. In its first form, it is a
measure of a person’s degree of confidence in a proposition, increasing from

zero to one as their attitude goes from almost total disbelief to near cer-



tainty. This kind of epistemic probability is called credence, degree of belief,
or subjective probability. The propositional attitude you get when you attach
a subjective probability to a proposition is sometimes called a partial belief.

In its second form, associated most often with the term logical proba-
bility, epistemic probability measures the impact of a piece or pieces of ev-
idence on a proposition. As such, it may not have the structure of a prob-
ability distribution, but it is related to a probability distribution in some
straightforward way, and as you will see shortly, is quite capable of provid-
ing a basis for a complete system of epistemic probability.

There is a foundational dispute between the proponents of the two forms
of epistemic probability. It is not a fight for existence but for primacy: the
question is which of the two kinds of epistemic probability is the more epis-

temologically basic.

Logical Probability The second form of epistemic probability has, since
1900, most often taken the guise of logical probability. A logical probabil-
ity is attached not to a proposition but to a complete inductive inference. It
is a measure of the degree to which the evidence contained in the premises
of an inductive inference, considered in isolation, probabilifies the conclu-
sion. The idea of probabilistic inference was an important part of classical
probability theory, but from the post-1900 perspective it is associated first
with Keynes (1921)—who was more famous, of course, as an economist.

In explaining the nature of logical probability, and in particular the tag
logical itself, Keynes draws a close analogy with deductive inference: whereas
in a deductive inference, the premises entail the conclusion, in an inductive
inference, they partially entail the conclusion, the degree of entailment being
represented by a number between zero and one, namely, a logical probabil-
ity. (Note that a degree zero entailment of a proposition is equivalent to
full entailment of the proposition’s negation; see below.) Just as the first
form of epistemic probability generalizes from belief to partial belief, then,

the second form generalizes, in Keynes’s hands, from entailment to partial



entailment.

An example: take as your conclusion the proposition that the next ob-
served raven will be black. A proposition stating that a single raven has been
observed to be black might entail this conclusion only to a relatively small
degree, this logical probability representing the slightness of a single raven’s
color as evidence for the color of any other raven. A proposition stating
that many hundreds of ravens have been observed to be black will entail the
conclusion to some much greater degree. And so on.

It is an objective matter of fact whether one proposition deductively en-
tails another; so, Keynes conjectured, it is in many cases a matter of objective
fact to what degree one proposition partially entails another. These facts
themselves comprise inductive logic; the logical probabilities are at base,
then, logical entities, just as the name suggests.

Although exact logical probabilities are for Keynes the ideal, he allows
that in many cases logic will fix only an approximate degree of entailment
for an inductive inference. The presentation in this entry will for simplicity’s
sake focus on the ideal case.

Keynes’s logical probability is not only compatible with subjective proba-
bility, the other form of epistemic probability; it mandates certain values for
a person’s subjective probabilities. If the premises in an inductive inference
are known for certain, and they exhaust the available evidence, then their
inductive impact on the conclusion—the degree of entailment, or logical
probability attached to the inference, from the premises to the conclusion—
is itself the degree of belief, that is, the subjective probability, that a rational
person ought to attach to the conclusion, reflecting as it does all and only
the evidence for the conclusion.

Keynes uses this argument as a basis for taking as a formal represen-
tation of logical probabilities the probability calculus itself: the degree to
which proposition b entails proposition a is written as a conditional prob-

ability P(a|b). Note that these probabilities do not change as the evidence



comes in, any more than facts about deductive entailment can change as the
evidence comes in. The logical probability P(a|b) must be interpreted as
a quantification of the inductive bearing of b alone on a, not of b together
with some body of accepted knowledge.

The unconditional probability P(a), then, is the inductive bearing on a
of an empty set of evidence—the degree to which a is entailed, if you like,
by the set of logical truths, or tautologies, alone. You might think that the
degree of entailment is zero. But this cannot be right: if you have no evidence
at all, you must set your subjective probabilities for both a and its negation
equal to their respective degrees of entailment by the tautologies. But you
cannot set both subjective probabilities to zero—it cannot be that you are
certain that neither a nor its negation is true, since one of the two must be
true. Your complete lack of evidence would be better represented by setting
both subjective probabilities to intermediate values, say one half. The logical
probabilist, in endorsing this assignment, implicitly asserts that the empty
set of evidence, or the set of tautologies, entails both a and its negation to
degree one half.

Although its subject matter is the bearing of evidence on hypotheses,
then, logical probability theory finds itself having to take a position on what
you should believe when you have no evidence (under the guise of the ques-
tion of the tautologies’ partial entailments). To answer this question, it has
turned to the principle of indifference, which recommends that when there is
no evidence favoring one of several mutually exclusive possibilities over the
others, the available probability be equally distributed among them. This is,
of course, the very same principle that comprises one strand of the classi-
cal definition of probability: Laplace suggested (see above) assigning equal
probabilities to cases “such as we may be equally undecided about in regard
to their existence”. It has also played an important role in the development of
the theory of subjective probability, and so is discussed in a separate section

below.
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As the role of indifference shows, logical probability is very close in spirit
to the epistemic strand of classical probability. It posits, at least as an ideal, a
single system of right reasoning, allowing no inductive latitude whatsoever,
to which all rational beings ought to conform. Insofar as rational beings ever
disagree on questions of evidential impact, it must be because they differ on
the nature of the evidence itself.

Many philosophers find this ideal of inductive logic hard to swallow;
even those sympathetic to the idea of strong objective constraints on induc-
tive reasoning are often skeptical that the constraints take the form of logical
truths, or something analogous to logical truths. This skepticism has two
sources.

First is the perception that inductive practices vary widely. Whereas
there exists a widespread consensus as to which propositions deductively
entail which other propositions, there is no such consensus on degrees of
evidential support. That is not to say, of course, that there is disagreement
about every aspect of inductive reasoning, but there is far less agreement
than would be necessary to build, in the same way that deductive logic was
constructed, a useful inductive logic.

Second, there are compelling (though not irresistible) reasons to believe
that it is impossible to formulate a principle of indifference that is both con-
sistent and strong enough to do the work asked of it by logical probabilists.
These reasons are sketched in the discussion of the principle below.

Carnap (1950) attempted to revive the idea of a system of induction
founded on logic alone in the mid-century. His innovation—drawing on
his general philosophy of logic—was to allow that there are many systems of
inductive logic that are, from a purely logical viewpoint, on a par. We may
freely choose from these a logic, that is, a set of logical probabilities, that
suits our particular non-logical ends.

Carnap relativized induction in two ways. First, his version of the prin-

ciple of indifference was indexed to a choice of language; how you distribute
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probability among rival possibilities concerning which you know nothing
depends on your canonical system for representing the possibilities. Second,
even when a canonical language is chosen, Carnap’s rule for determining in-
ductive support—that this, degrees of entailment or logical probabilities—
contains a parameter whose value may be chosen freely. The parameter de-
termines, roughly, how quickly you learn from the evidence. Choose one
extreme, and from the observation of a single black raven you will infer
with certainty that the next raven will also be black (“straight induction”).
Choose the other extreme, and no number of black ravens is great enough
to count as any evidence at all for the blackness of the next raven. A sen-
sible choice would seem to lie somewhere in the middle, but on Carnap’s
view, logic alone determined no preference ranking whatsoever among the
different choices, rating all values apart from the extremes as equally good.

Carnap did give extra-logical arguments for preferring a particular value
for the parameter, arriving at an inductive rule equivalent to Laplace’s own
“rule of succession” Given that, say, i out of n observed ravens have been
black, both Carnap and Laplace assign a probability of (i + 1) /(n + 2) to the
proposition that the next raven will be black.

One awkward feature of Carnap’s system is that, no matter what value
is chosen for the inductive parameter, universal generalizations cannot be
learned: the inductive bearing of any number of black ravens on the hy-
pothesis All ravens are black is zero.

Carnap’s system is of great intrinsic interest, but from the time of its
presentation, its principal constituency— philosophers of science—was be-
ginning to move in an entirely different direction. Such considerations as
Goodman’s new riddle of induction and arguments by Bayesians and others
that background knowledge played a part in determining degree of induc-
tive support, though not beyond the reach of Carnap’s approach, strongly
suggested that the nature of inductive support could not be purely logical.

Today, the logical approach to inductive inference has been supplanted

12



to a great extent by (though not only by) the Bayesian approach (see the
entry on Bayesianism). Yet in Bayesianism itself some have seen the seeds of

a new inductive logic.

Subjective Probability ~ Whereas logical probability is a logical entity—a
quantification of the supposed logical facts about “partial entailment” —the
other kind of epistemic probability, subjective probability, is a psychologi-
cal entity, reflecting an actual cognitive fact about a particular person or (if
they are sufficiently agreed) a group of people. The rationality of a person’s
subjective probabilities may be a matter of logic, then, but the probabilities
themselves are a matter of psychology.

That for a number of propositions, we tend to have a degree of con-
fidence intermediate between the extremes associated with total disbelief
and total belief, no one will deny. The advocates of subjective probability
as a key epistemological notion—who call themselves Bayesians or simply
subjectivists—go much further than this. They characteristically hold that
humans have, or ought to have, well-defined subjective probabilities for ev-
ery proposition, and that these subjective probabilities play a central role in
epistemology, both in inductive inference, by way of Bayes’ conditionaliza-
tion rule (see the entry on Bayesianism), and in practical deliberation, by
way of the usual mechanisms of decision theory.

The subjectivist’s first challenge is to give a substantial characterization
of subjective probability and to argue that subjective probabilities are instru-
mental in human cognition, while at the same time finding a foothold in the
descriptive, psychological scheme for the normative concerns of epistemol-
ogy. Much of this groundwork was laid in Frank Ramsey’s influential paper
“Truth and Probability” (Ramsey 1931).

Ramsey does not define subjective probability as such, and even goes so
far as to acknowledge that the ideal of a definite subjective probability for
every proposition is just that—an ideal that goes a long way towards cap-

turing actual human epistemology without being accurate in every respect.
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What he posits instead is a connection—whether conceptual or empirical
he does not say—between the value of a person’s subjective probability for a
proposition and their betting behavior.

If you have a subjective probability p for a proposition a, Ramsey claims,
you will be prepared to accept odds of up to p : (1 - p) on the truth of a.
That is, given a game in which you stand to win $n if a is true, you will pay
up to $pn to play the game; equivalently, if you will pay up to $m to play a
game in which you stand to win $7 if a is true, your subjective probability
for a must be m/n. (Decision theorists, note, talk about utility, not dollars.)

Importantly, all human choice under uncertainty is interpreted as a kind
of betting. For example, suppose you must decide whether to wear a seat belt
on a long drive. You are in effect betting on whether you will be involved in
an auto accident along the way. If the cost of wearing a belt, in discom-
fort, inconvenience, and forsaken cool, is equivalent to losing $m, and the
cost of being beltless in an accident, in pain, suffering and higher insurance
premiums, is $7, then you will accept the risk of going beltless just in case
your subjective probability for there being an accident is less than or equal
to m/n. (Here the “prize” is negative. The cost of playing is also negative,
so just by agreeing to play the game, you gain something, the increase in
comfort, cool and so on. Your aim is to play while avoiding a win.) The
central doctrine of decision theory is, then, built into the characterization of
subjective probability.

Ramsey uses this fact to argue that, provided a person’s behavior is co-
herent enough to be described, at least approximately, by the machinery of
decision theory, their subjective probabilities for any proposition you like
may be inferred from their choices. In effect, their subjective probabilities
are inferred from the nature of the bets, in the broadest sense, they are pre-
pared to accept. Because our overt behavior can be systematized, approxi-
mately, using a decision-theoretic framework, then, we must have subjective

probabilities for every proposition, and these probabilities must play a cen-
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tral role in our decision theory.

What is the force of the must in the preceding sentence? That depends
on the nature of the posit that your having a certain subjective probability
for a proposition means that you are prepared to accept certain odds on the
proposition’s being true. Some writers, especially in the mid-century heyday
of conceptual analysis and psychological behaviorism, interpret the posit as
a definition of subjective probability; on this view, your having certain sub-
jective probabilities just is your having a certain betting behavior. Others,
like Ramsey, opt for a looser connection. On any approach, there is a certain
amount of latitude in the phrase prepared to accept. If you are prepared to
accept certain odds, must you play a game in which you are offered those
odds? Or only if you are in a betting mood? The former answer vastly sim-
plifies the subjectivist enterprise, but at a cost in psychological plausibility: it
is surely true that we frequently gamble in the broad sense that we take mea-
sured risks, but it is not nearly so obvious that we are compulsive gamblers
intent on taking on every favorable risk we can find. Recent work on the
psychology of decision-making also suggests that it is a mistake to found the
subjectivist enterprise on too strong a conception of the connection between
subjective probability and betting behavior.

Subjective probabilities are supposed to conform, as the name suggests,
to the axioms of probability theory. In a theory such as Ramsey’s, a certain
amount of probability mathematics is built into the technique for extracting
the subjective probabilities; that humans not only have subjective probabil-
ities, but arrange them in accord with the axioms, is therefore a condition
for the success of Ramsey’s project.

Insofar as subjective probability is not simply defined as whatever comes
out of the Ramsey project, however, there is a question as to whether sub-
jective probabilities obey the axioms. If they do not, there is really very little
that they are good for, so the question is an important one for subjectivists,

who tend to follow Ramsey in giving a normative rather than a descriptive
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answer: it is rational to arrange your subjective probabilities in accordance
with the axioms. (It is not unreasonable, of course, to see this normative
claim, if true, as evidence for the corresponding descriptive claim, since hu-
mans are in certain respects reliably rational.)

The vehicle of Ramsey’s argument is what is called the Dutch book theo-
rem: it can be shown that, if your subjective probabilities violate the axioms,
then you will be prepared to accept certain sets of bets (which bets depends
on the nature of the violation) that will cause you a sure loss, in the sense
that you will lose whether the propositions that are the subjects of the bets
turn out to be true or false.

The details of the argument are beyond the scope of this entry (for a
more advanced introduction, see Howson and Urbach 1993), but an exam-
ple will illustrate the strategy. The axioms of the probability calculus require
that the probability of a proposition and that of its negation sum to one.
Suppose you violate this axiom by assigning a probability of 0.8 both to a
certain proposition a and to its negation. Then you are prepared to accept
odds of 4 : 1 on both a and —a, which means a commitment to playing,
at the same time, two games, in one of which you pay $8 and win $10 (i.e.,
your original $8 plus a $2 “profit”) if a is true, and in one of which you
pay $8 and win $10 if a is false. Whether a is true or false, you pay $16
but win only $10—a certain loss. To play such a game is irrational; thus,
you should conform your subjective probabilities to the probability calcu-
lus. Needless to say, the Dutch book argument works best on the dubious
interpretation of prepared to accept as equivalent to compelled to accept; there
have been many attempts to reform or replace the argument with something
that makes weaker, or even no, assumptions about betting behavior.

Subjectivism has been developed in several important directions. First
are various weakenings or generalizations of the subjectivist machinery. The
question of the connection between subjective probability and betting be-

havior is, as noted, one locus of activity. Another attempts to generalize
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the notion of a subjective probability to a subjective probability interval, the
idea being that where you do not have an exact subjective probability for a
proposition, you may have an approximate level of confidence that can be
captured by a mathematical interval, the equivalent of saying that your sub-
jective probability is indeterminately somewhere between two determinate
values.

Second, and closely related, is all the work that has been put into devel-
oping decision theory over the last 100 years (see for example Jeffrey 1983).

Finally, subjectivism provides the foundation for the Bayesian theory of
inference. At the root of the Bayesian system is a thought much like the
logical probabilist’s doctrine that, if k is your background knowledge, then
your subjective probability for a hypothesis a ought to be P(a|k). Whereas
for a logical probabilist a conditional probability P(a|b) is a timeless logical
constant, for a subjectivist it is something that constantly changes as further
evidence comes in (even holding a and b fixed). For this reason, the sub-
jectivist theory of inference must be an inherently dynamic theory; what is
perhaps its best-known weakness, the “problem of old evidence”, arises from
this very fact. See the entry on Bayesianism for further discussion.

Subjectivism had almost entirely eclipsed logical probabilism by the late
twentieth century; as the celestial metaphor unwittingly implies, however,
there is a cyclic aspect to philosophical history: an interest in the central
notion of logical probability theory, evidential weight, is on the rise.

There are three strands to this new movement. First is the perception
among philosophers of science that scientific discourse about evidence is
almost never about the subjective probability scientists should have for a
hypothesis, and almost always about the degree of support that the evidence
lends to the hypothesis. Second is the development of new and safer (though
limited) versions of the principle of indifference. Third is technical progress
on the project of extracting from the principles of Bayesian inductive infer-

ence a measure of weight. Note that this third project conceives of inductive
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weight as something derived from the more basic Bayesian principles gov-
erning the dynamics of subjective probability, a view quite opposed to the
logical probabilists’ derivation of rational subjective probabilities from the
(by their lights) more basic logical principles governing the nature of induc-

tive support. See the entry on Bayesianism for further discussion.

Indifference  The principle of indifference distributes probability among
various alternatives—in the usual case, mutually exclusive and exhaustive
propositions— concerning which little or nothing is known. The princi-
ple’s rationale is that certain probability distributions reflect ignorance bet-
ter than others. If I know nothing that distinguishes two mutually exclusive
possibilities, picked out by propositions a and b, then I have no reason to ex-
pect one more than the other: I should assign the propositions equal prob-
abilities. Any asymmetric assignment, say assigning twice the probability to
a that I assign to b, would reflect some access on my part to facts supporting
a at the expense of b. Thus ignorance and probabilistic symmetry ought to
go hand in hand— or so the principle of indifference would have it.

The principle is an essential part of logical probability theory, for the
reasons given above, but there have always been subjectivists who appeal
to the principle as well. It is most useful within the Bayesian approach to
inductive inference; see the entry on Bayesianism for further discussion.

The epistemic strand of classical probability theory also invokes the prin-
ciple, of course, running it together with the discernment of “equally pos-
sible cases” in the paradigmatic gambling setups. This conflation has con-
fused the discussion of the principle ever since, with proponents of the prin-
ciple continuing to take aid and comfort in the principle’s apparent virtuoso
handling of cases such as the one half probability of heads. Our reasoning
about the gambling probabilities, however, as the classical probabilists for
the most part themselves dimly saw, is a matter of inferring physical prob-
abilities from physical symmetries, not of setting epistemic probabilities to

reflect symmetric degrees of ignorance (Strevens 1998).
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The most famous arguments against the principle of indifference were
developed in the nineteenth century, as already noted a time of hegemony
for physical over epistemic probability. They take their name from Joseph
Bertrand, who pointed to the difficulty of finding a unique symmetry in
certain indifference-style problems.

Consider, for example, two leading theories of dark matter in the uni-
verse: the MACHO and the wimP theories. Each posits a certain generic form
for dark matter objects, respectively very large and very small. If you have no
evidence to distinguish them, it seems that the principle of indifference di-
rects you to assign each a probability of one half (assuming for the sake of the
argument that there are no other possibilities). But suppose that there are
four distinct schools of thought among the macHO theorists, corresponding
to four distinct ways that macHOs might be physically realized, and eight
such schools of thought among wimp theorists. Now there are twelve possi-
bilities, and once probability is distributed equally among them, the generic
MACHO theory will have a probability of one third and the wimp theory a
probability of two thirds. Cases such as this make the principle seem capri-
cious, if not simply inconsistent (as it would be if it failed to pick out a
privileged symmetry).

Matters become far worse, as Bertrand noted, when there are uncount-
ably many alternatives to choose among, as is the case in science when the
value of a physical parameter, such as the cosmological constant, is un-
known. Even in the simplest such cases, the principle equivocates (van
Fraassen 1989, chap. 12). As noted above, some progress has been made
in solving these problems, Jaynes (1983) being a ringleader. Most philoso-
phers, though, doubt that there will ever be a workable principle of indiffer-

ence suited to the needs of general inductive inference.
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Physical Probability

The paradigms of physical probability are the probabilities attached to gam-
bling setups; there are, however, many more interesting examples: the prob-
abilities of quantum mechanics and kinetic theory in physics, the proba-
bilities of population genetics in evolutionary theory, actuarial probabilities
such as the chance of dying before reaching a certain age, and the probabili-
ties in many social science models.

It is by no means clear that there is a single phenomenon to be explained
here; the physical probabilities ascribed to phenomena by our best scientific
theories may differ in their makeup from theory to theory. There is a com-
monality in the phenomena themselves, however: whenever the notion of
physical probability is put to scientific work, it is to predict or explain what
might be called probabilistic patterns of outcomes. These patterns are char-
acterized by a certain kind of long run order, discernible only over a number
of different outcomes, and a certain kind of short term disorder, the details
of the order and disorder depending on the variety of probability distribu-
tion.

The simplest and best-known of the patterns is the Bernoulli pattern,
which takes its name from the corresponding probability distribution. This
is the pattern typical of the outcomes produced by gambling devices, such as
the pattern of heads and tails obtained by tossing a coin. The long term order
takes the form of a stable frequency equal to the corresponding probability;
in the case of the tossed coin, this is of course the one half frequency with
which heads and tails occur (almost always) in the long run. The short term
disorder, though an objective property of the pattern itself, is perhaps best
gotten at epistemically: once you know that the long run frequency of heads
is one half, the outcome of one toss gives you no useful information about
the outcome of the next. The law of large numbers implies that a chance
setup will produce its characteristic probabilistic patterns in the long run

with a very high (physical) probability.
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When discussing physical probability, it is more natural to talk of proba-
bilities attaching to events than to propositions; what follows will be formu-

lated accordingly.

The Frequency Theory The frequentist theory of physical probability has its
roots in the empiricist interpretation of law statements according to which
they assert only the existence of certain regularities in nature (on the regular-
ity theory, see Armstrong 1983). What is usually called the actual frequency
theory of probability understands physical probability statements, such as
the claim that the probability of a coin toss’s yielding heads is one half, as as-
serting in like spirit the existence of the appropriate probabilistic patterns—
in the case of the coin toss, for example, a pattern of heads and tails in the
actual outcomes of coin tosses exemplifying both the order and the disorder
characteristic of the Bernoulli patterns.

The characteristic order in a Bernoulli pattern is a long run frequency
approximately equal to the relevant probability; in the case of the coin, then,
it is a long run frequency for heads of one half. It is from this aspect of the
pattern that frequentism takes its name. (One complication: a distinction
must be made between the case in which the set of events exemplifying the
pattern is finite and the case in which it is countably infinite. In a finite case,
what matters is the proportion or relative frequency, whereas in the infinite
case, it is instead the limiting frequency, that is, the value of the relative fre-
quency in the limit, if it exists, as it must for the Bernoulli pattern to exist.)

Although their account is named for frequencies, most frequentists in-
sist also on the presence of appropriate short term disorder in the patterns.
It is less easy to characterize this disorder in the purely extensional terms
implicit in a commitment to regularity metaphysics. Suffice it to say that
there is a broad range of characterizations, some very strict, some rather
lax. Among frequentists, von Mises tends to a strict, Reichenbach to a lax,
requirement (though Reichenbach holds, characteristically, that there is no

uniquely correct level of strictness). For a discussion of the technical prob-
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lems in constructing such a requirement, see Fine (1973).

The probability that a particular coin toss lands heads is one half, ac-
cording to frequentism, because the outcome of the toss belongs to a series
that exemplifies the Bernoulli pattern with frequency one half. The “truth-
maker” for the probability claim is a fact, then, about a class of outcomes,
not just about the particular outcome to which the probability is nominally
attached. But which class? If I am tossing an American quarter, does the
class include all American quarters? All American and Canadian quarters?
All fair coins? Or—ominously—all coin tosses producing heads? To give an
answer to this question is to solve what has become known as the problem
of the reference class.

The standard frequentist solution to the problem is to understand prob-
ability claims as including a (perhaps implicit) specification of the class. All
physical probability claims are, in other words, made relative to a reference
class. This doctrine reveals that the frequency theory is best seen as an ac-
count, in the first instance, of statements of statistical laws. A claim about
the one half probability of heads, for example, is on the frequency interpre-
tation in essence a statement of a probabilistic law concerning a class of coin
tosses, not a claim about a property of a particular toss.

The kinship between the regularity account of deterministic laws and the
frequency account of probability is, then, even closer than it first appears.
Note that the regularity account has its own analog of singular probability
claims, namely, singular claims about deterministic “tendencies”, such as a
particular brick’s tendency to fall to earth when released. Regularity theorists
interpret a tendency claim not as picking out an intrinsic property of the
object possessing the tendency, but as a veiled law statement.

The case of probability introduces a complication, however, that is not
present in the case of exceptionless regularities: a particular coin toss will
belong to many reference classes, some with different frequencies for heads.

There may be, then, no determinate fact of the matter about an individual
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coin toss’s “probabilistic tendency” to produce heads, or equivalently, about
what are often called single case probabilities. Frequentists have made their
peace with this consequence of their view.

Opponents of the frequency view argue that single case probabilities are
metaphysically, inductively, and explanatorily indispensable. Are they right?
The case for metaphysical indispensability: some writers, especially propen-
sity theorists (see below), hold that there is clearly a fact of the matter about
the value of the probability that some particular coin toss lands heads, inde-
pendent of any choice of reference class. Frequentists may simply deny the
intuition, or may try explain away the appearance of a single case fact (for
related versions of the explanation, see Reichenbach 1949, §68 and Strevens
2003, pp. 61-62).

The case for predictive indispensability: in order to settle, for predictive
and decision-theoretic purposes, on a rational subjective probability for an
event using the probability coordination principle, a corresponding physical
probability must be found (see the discussion of probability coordination
below). The corresponding probability is often understood to be the physi-
cal probability of that very event, hence, a single case probability. Frequen-
tists must find an alternative understanding. Reichenbach (1949, §71-72)
proposes using the frequentist probability relative to the narrowest reference
class “for which reliable statistics can be compiled” (p. 374).

The case for explanatory indispensability rests principally on the intu-
ition that the probabilistic explanation of a single outcome requires a single
case probability. The philosophy of scientific explanation, much of it de-
veloped by regularity theorists and other metaphysical empiricists, offers a
number of alternative ways of thinking about explanation, for example, as
a matter of showing that the outcome to be explained was to be expected,
or as a matter of subsuming the outcome to be explained under a general
pattern of outcomes (both ideas proposed by Hempel; see the entry on Ex-

planation). The fate of frequentism, and more generally of the regularity
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approach to laws of nature, depends to some extent, then, on the adequacy
of these conceptions of explanation.

Why be a frequentist? The view has two principal advantages. First is
its light metaphysical touch, shared with the regularity account of laws. Sec-
ond is the basis it gives for the mathematics of probability: frequencies, as
mathematical objects, conform to almost all the axioms of probability. Only
almost all, because they violate the axiom of countable additivity, an ex-
tension to the countably infinite case of the third axiom described earlier.
Countable additivity plays an important role in the derivation of some of
probability mathematics’ more striking results, but whether it is necessary
to provide a foundation for the scientific role of physical probability claims
is unclear.

There is more than one way to be a frequentist. A naive actual frequen-
tist holds that there is a probability wherever there is a frequency, so that,
in a universe where only three coin tosses have ever occurred, two coming
up heads, there is a probability for heads of two-thirds. This view has been
widely criticized, though never held. Compare with the naive regularity the-
ory of laws (Armstrong 1983, §2.1).

What might be called ideal actual frequentism is the theory developed by
Reichenbach (1949) and von Mises (1957). On this view, probability state-
ments are construed as ideally concerning only infinite classes of events. In
practice, however, they may be applied to large finite classes that in some
sense come close to having the properties of infinite classes. Thus Reichen-
bach distinguishes the logical meaning of a probability statement, which as-
serts the probabilistic patterning of an infinite class of outcomes, and the
finitist meaning that is given to probability claims in “physical applications”,
that is, in the scientific attribution of a physical probability (p. 349). On the
finitist interpretation, then, a physical probability claim concerns the prob-
abilistic patterning of some actual, finite class of events—albeit a class large

enough to have what Reichenbach calls a “practical limiting frequency”. (Re-
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ichenbach’s wariness about logical meaning owes as much, incidentally, to
his desire to have his theory of probability conform to the verifiability the-
ory of meaning as to a concern with, say, the validity of probability claims in
a finite universe.)

David Lewis, reviving Frank Ramsey’s account of laws of nature, pro-
poses that the fundamental laws are nothing but the axioms of the theory
that best systematizes, or unifies, the phenomena. A systematization is good
to the degree that it is simple, to the degree that it makes claims about a large
proportion of the phenomena (ideally all the phenomena, of course), and to
the degree that its claims are accurate. (Lewis 1994) extends the definition
of accuracy, or as he calls it, fit, to accommodate axioms attributing physi-
cal probabilities: a set of phenomena are a good fit to a physical probability
statement if the phenomena exemplify the probabilistic patterns appropri-
ate to the probability ascribed. A system of probabilistic axioms will be a
good systematization, then, only if the physical probabilities it assigns to the
phenomena are reflected, for the most part, in corresponding probabilistic
patterns.

In this respect, Lewis’s view is a form of frequentism: although there is
not some particular set of outcomes whose probabilistic patterning is nec-
essary and sufficient for the truth of a given probabilistic law statement, it is
nevertheless the world’s probabilistic patterns, taken as a whole, that provide
the basis for all true statements of probabilistic law.

Some writers suggest that a claim such as The probability of obtaining
heads on a toss of this coin is one half is equivalent to the claim that, if the
coin were tossed infinitely many times, it would yield heads with a limit-
ing frequency of one half. The truth-makers for physical probability claims,
then, are modal facts (except in the case where there actually are an infinite
number of tosses). This view is known as hypothetical frequentism.

Though much discussed in the literature, hypothetical frequentism is

seldom advocated. Reichenbach and von Mises are sometimes labeled hy-
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pothetical frequentists, but the textual evidence is thin, perhaps even non-
existent. Howson and Urbach (1993, chap. 13) advocate a hypothetical fre-
quency view. Bas van Fraassen’s frequencies are also hypothetical, but be-
cause he holds that the literal meaning of theoretical claims is irrelevant
to the scientific enterprise, the spirit of his account of probability is, in its
empiricism, closer to Reichenbach’s ideal actual frequentism (van Fraassen
1980, chap. 6).

The weaknesses of frequentism are in large part the weaknesses of the
regularity theory of laws. An interesting objection with no parallel in the
regularity account is as follows: in the case of reference classes containing
countably infinite numbers of events, the value (indeed, the existence) of the
limiting frequency will vary depending on how the outcomes are ordered.
There appear to be no objective facts, then, about limiting frequencies. Or
rather, if there are to be objective facts, there must be some canonical order-
ing of outcomes, either specified along with the reference class or fixed as a
part of the scientific background. How serious an impediment this is to the

frequentist is unclear.

The Propensity Theory If frequentism is the regularity theorist’s natural in-
terpretation of physical probability claims, then the propensity account is
the interpretation for “realists” about laws, that is, for philosophers who be-
lieve that law statements assert the existence of relations of nomic necessity,
causal tendencies, and so on (Armstrong 1983). For the propensity the-
orist, probabilities are propensities, and propensities are a certain kind of
distinctly probabilistic causal tendency or disposition.

The propensity theorist’s home territory is single case probability, the
kind of probability attached to a particular physical process or outcome in-
dependently of the specification of a reference class or ordering of outcomes.
Because propensities are supposed to be intrinsic properties of token pro-
cesses, on the propensity view every probability is a single case probability.

Given some particular outcome that you wish to predict or explain, then,
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there is an absolute fact of the matter as to the physical probability of the
outcome, which you may—and presumably, must—use in your prediction
or explanation.

Of course, knowledge of this fact, if it is to be obtained by observing the
statistics of repeated experiments, will require the choice of a reference class,
the aim being to find a class containing processes that are sufficiently similar
that their statistics reveal the nature of each of the underlying propensities
in the class. Further, by analogy with the case of deterministic causal ten-
dencies, propensities may owe their existence to probabilistic laws govern-
ing classes of processes. Thus, something not unlike the frequentist’s refer-
ence classes may turn up in both the epistemology and the metaphysics of
propensities, but this does not detract from the fact that on the propensity
view, there are real, observer-independent single case probabilities.

To identify probabilities with propensities is revealing because we think
that we have a good intuitive sense of the nature of propensities in the deter-
ministic case; we are reasonably clear on what it is to be fragile, aggressive,
or paramagnetic. Though the metaphysics of dispositions is still a matter
of dispute, it seems that we come to deterministic propensities, at least at
first, by grasping what they are propensities for: breaking, violent behavior,
magnetic attraction, and so on. To adopt a propensity theory of probabil-
ity, then, with the sense of familiarity the word propensity brings, is to make
an implicit commitment to elucidating what probabilistic propensities are
propensities for.

A straightforward answer to this question was given by Popper (1959) in
one of the earliest modern presentations of the propensity theory: a prob-
abilistic propensity is a disposition to produce probabilistically patterned
outcomes. A particular coin’s probability for heads of one half, then, is a
disposition to produce a sequence of heads and tails that is disordered in the
short term, but in the long term contains heads with a frequency of one half.

(Popper in fact omits the disorder requirement, and allows that the sequence
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may be long and finite or infinite.) On Popper’s view, then, a probabilistic
propensity differs from a deterministic propensity not in the means of pro-
duction, but only in what is produced: a probabilistic pattern over a long
series of trials, rather than a single discrete episode of, say, shattering or
magnetic attraction.

Popperian propensity theory is committed to the claim that, if the prob-
ability of a tossed coin’s landing heads is one half (and remains so), then
continued tossing of the coin will eventually yield a set of outcomes of which
about one half are heads. But this sits badly with our intuitive conception
of the workings of probability: if the probability of heads is one half, then it
is possible, though unlikely, that it will produce all heads for as long as you
like, even forever.

This intuition has an analog in probability mathematics. The law of large
numbers prescribes a very high probability that the long run frequency with
which an outcome occurs will match its probability; by the same token, how-
ever, there is a non-zero probability that any (finite) long run will fail to pro-
duce a probability-matching frequency. There is some physical probability,
then, that a probabilistic propensity will fail to produce what, according to
the Popperian propensity view, it must produce. If this physical probabil-
ity is itself a Popperian propensity—and surely it is just another manifesta-
tion of the original one half propensity for heads—then it must produce, by
Popper’s definition, a matching frequency, which is to say that it must oc-
casionally produce the supposedly impossible series of heads. If it is to be
consistent, Popper’s definition must be carefully circumscribed. (There is a
lesson here for frequentists, too.)

Most propensity theorists accept that probabilistic setups will occasion-
ally fail to produce probability-matching frequencies. Thus they repudiate
Popper’s version of the propensity theory. What, then, can they say about
the nature of the propensity? Typically, they hold that the probability of,

say, heads is a propensity to produce the appropriate probabilistic patterns
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with a very high physical probability (Fetzer 1971; Giere 1973)—thus such
a probabilistic propensity is probabilistic not only in its characteristic effect,
which is, as on Popper’s definition, a probabilistic pattern, but also in its
relation to the effect. (Mellor (1971) offers an interesting variant on this
view.)

Whereas the Popperian definition comes close to inconsistency, this new
definition is manifestly circular. Its proponents accept the circularity, so
committing themselves to the ineffability of probabilistic propensities.

The ineffability of propensities, it is asserted, is not a problem provided
that their values can be inferred; the usual apparatus of statistical inference
is tendered for this purpose. Critics of the post-Popperian propensity inter-
pretation naturally fasten on the question of whether it succeeds in saying
anything substantive about probability at all—anything, for example, that
illuminates the question of why physical probabilities conform to the axioms
of the probability calculus or explain the outcomes that they produce. It does
seem that modern propensity theorists are not so far from what is sometimes
called the “semantic interpretation” of probability, on which probabilities
are considered to be model-theoretic constructs that ought not to be inter-
preted at all, but simply accepted as formal waypoints between evidence and
prediction in probabilistic reasoning (Braithwaite 1953). Compare Carnap’s
notion of partial interpretation and Suppes (1973).

A characteristic doctrine of the propensity theory is that probabilistic
propensities, hence probabilities, are metaphysically irreducible: they are in
some sense fundamental building blocks of the universe. The corollary to
this doctrine is that the physical probabilities science assigns to outcomes
that are deterministically produced—including, according to many philoso-
phers, the probabilities of statistical mechanics, evolutionary biology, and so
on—are, because not irreducible, not propensities, hence not “real” proba-
bilities. Giere writes that they must be given an “as if” interpretation, but

propensity theorists offer no account of “as if” probability’s scientific role.

29



On a broader understanding of the nature of a propensity, however, at
least some of the physical probabilities assigned by science to the outcomes
of deterministic processes might count as probabilistic propensities. As ex-
plained in the entry on chaos, certain sub-classes of chaotic systems have
dynamic properties in virtue of which they tend to generate probabilistic
patterns of outcomes (Strevens 2003). These dynamic properties may be
understood, then, as endowing the systems with a propensity to produce
probabilistic patterns, and the propensity itself may be identified with the
physical probabilities that science ascribes to the outcomes.

There is one, not inconsiderable, complication: the systems in question
will generate the probabilistic patterns only given appropriate initial con-
ditions. Almost all, but not all, initial conditions will do. This raises two
important questions that need to be answered if chaos is to provide a part of
the foundation for the metaphysics of physical probability. First, ought the
necessary properties of the initial conditions to be considered a part of the
propensity? If so, the propensity seems not to be an intrinsic causal prop-
erty of the process. Second, the initial conditions are, in this context, most
naturally described using a probability distribution. Thus the basis of the
probabilistic propensity is a further probabilistic element itself in need of

analysis.

The Subjectivist Theory It is something of a mystery why the mathematics
of the probability calculus should be useful both for capturing elements of
belief and inductive inference and for describing the processes that give rise
to probabilistic patterns, or in other words, why two such different things as
epistemic and physical probability should share the same formal structure.
According to the subjectivist theory of physical probability, there is no
mystery at all: physical probabilities are nothing but a certain kind of sub-
jective probability. The intuition that, say, the probability of heads is a quan-
tification of some physical property of the tossed coin is, on the subjectivist

approach, an illusion: there are frequencies and mechanical properties out
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in the world, but “physical probabilities” exist entirely in the descriptive ap-
paratus of our theories, or in our minds.

For the principal architect of subjectivism, Bruno de Finetti, the appeal
of the theory is not only its neoclassical reunification of epistemic and phys-
ical probability, but also its empiricism: subjectivism is most at home in
what is now called a Humean world. Of course, frequentism is also a the-
ory of physical probability that the metaphysical empiricist can embrace; the
main advantage of subjectivism over frequentism is its provision—if such is
truly necessary— of single case probabilities (de Finetti 1964).

Subjectivism asserts the identity of the subjective probability for heads
and the physical probability for heads. But it does not claim that, say, my
subjective probability for the MmacHO theory of dark matter is also a physi-
cal probability for the theory. Rightly so, because we do not acknowledge
the existence of physical probabilities wherever there are subjective proba-
bilities. A plausible subjectivism must have the consequence that we project
only a small subset of our subjective probabilities onto the world as physical
probabilities.

At the heart of the subjectivist theory, then, must be a criterion that picks
out just those subjective probabilities that are experienced as physical, and
that accounts for their particular, peculiar phenomenology. The key no-
tion in the criterion is one of resilience: unlike most subjective probabilities,
which change as more evidence comes in, the subjective probabilities we call
physical have attained a certain kind of stability under the impact of addi-
tional information. This stability gives them the appearance of objectivity,
hence of reality, hence of physicality, or so the subjectivist story goes. Skyrms
(1980) employs this same notion of resilience to give a projectivist account
of causal tendencies and lawhood in the deterministic as well as the proba-
bilistic case; subjectivism, then, like frequentism and the propensity theory,
can be seen as a part of a larger project embracing all causal and nomological

metaphysics.
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There is an obvious difficulty with the subjectivist position as elaborated
so far: my subjective probability for an outcome such as a coin’s landing
heads may very well change as the evidence comes in. I may begin by be-
lieving that a certain coin is fair, and so that the physical probability of its
yielding heads when tossed is one half. As I continue to toss it, however, I
may come to the realization that it is biased, settling eventually on the hy-
pothesis that the physical probability of heads is three quarters. Throughout
the process of experimentation, I project (according to the subjectivist) a
physical probability distribution onto the coin, yet throughout the process,
because the projected physical probability for heads is changing, increasing
from one half to three quarters, my subjective probability for heads is also
changing. Where is the resilience?

De Finetti’s achievement is to find a kind of resilience, or constancy, in
my subjective probabilities even as my subjective probability for heads is
changing. This resilience is captured by the property de Finetti calls ex-
changeability. Consider my subjective probability distribution over, say, the
outcomes of the next four tosses of my coin. Every possible sequence of
four outcomes will be assigned some subjective probability. The probabil-
ity assignment—the subjective probability distribution—is said to be ex-
changeable if any two sequences having the same number of heads and tails
are assigned equal probabilities. For example, exchangeability implies that
HTHT and HHTT, each having two heads and two tails, are assigned the
same probability, but allows this probability to differ from that assigned to,
say, HHHT. In an exchangeable distribution, then, the probability assigned
to a sequence of heads and tails depends only on the relative frequency with
which heads and tails occur in the sequence (in the case of infinite sequences,
which de Finetti uses in his mathematical construction, substitute limiting
frequency).

If my subjective probability distribution over heads and tails is exchange-

able, then the order in which the heads and tails come in as I experiment
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with my coin will not in itself affect my subjective probability for heads. The
frequency with which heads and tails come in will, by contrast, most defi-
nitely affect my subjective probability. Thus exchangeability is a kind of par-
tial resilience; it is resilience to information about order, but not frequency.

De Finetti claims, uncontroversially, that our subjective probability dis-
tributions over future sequences of heads and tails (and the outcomes of
other Bernoulli setups) are exchangeable. He goes on to prove a theorem—
his celebrated representation theorem—that shows that the following two
reasoners will be outwardly indistinguishable: first, a reasoner who has vari-
ous hypotheses about the physical probability of heads and updates the sub-
jective probabilities for these hypotheses in the usual way as evidence comes
in, and second, a reasoner who has no beliefs about physical probabilities,
but simply has an exchangeable subjective probability distribution over fu-
ture sequences of outcomes. The only difference between the two reasoners,
then, will be that the first will claim, presumably as a result of introspection,
to be learning about the values of physical probabilities in the world.

The subjectivist’s sly suggestion is that we are all in fact reasoners of the
second kind, falsely believing that we are reasoners of the first kind. Or,
in a more revisionist mood the subjectivist may argue that, though we are
reasoners of the first kind, we will give up nothing but dubious metaphysical
commitments by becoming reasoners of the second kind.

Critics of subjectivism question the aptness of exchangeability as a psy-
chological foundation for probabilistic reasoning. The sole reason that we
assign exchangeable subjective probability distributions to certain classes of
sequences, according to these writers, is that we believe the sequences to
be produced by physical probabilities (Bernoulli distributions, to be exact),
and we know that an exchangeable subjective probability distribution is ap-
propriate for outcomes so produced. This argument, note, has both a de-
scriptive and a normative dimension: against a descriptive subjectivist, who

holds that beliefs about physical probability play no role in our probabilistic
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reasoning, the critic proposes that such beliefs cause us to assign exchange-
able distributions. Against a normative subjectivist, who holds that beliefs
about physical probability should not play a role in our probabilistic reason-
ing, the critic proposes that such beliefs are required to justify our assigning
exchangeable distributions.

A different line of criticism targets subjectivism’s metaphysics: why not
identify physical probability with whatever produces the probabilistic pat-
terns? Why not say that the probability of heads is a quantification of, at
least in part, the physical symmetry of the coin? Such a position has its
problems, of course (see the discussion of the propensity theory above), but
they are not obviously insurmountable. More generally, given the rich array
of options available for understanding the nature of physical probability, the
subjectivist’s flight from any attempt to give a metaphysics seems to many,

as yet, insufficiently motivated.

Probability Coordination

It is generally accepted that it is rational, in normal circumstances, to set
your subjective probability for an event equal to the physical probability as-
cribed by science to that event, or to that type of event. Returning to the
very first paragraph of this entry, if the physical probability of a hurricane
is high, you should expect—you should assign a high subjective probability
to—a hurricane strike. This is the principle of probability coordination.
Because the equation of physical and epistemic probability is made ex-
plicit in the classical definition of probability, classicists are probability co-
ordinators par excellence. Leibniz, for example, articulates what appears to
be an early formulation of the probability coordination principle when he
writes quod facile est in re, id probabile est in mente; Hacking (1975, 128)
glosses this as “our judgment of probability ‘in the mind’ is proportional to

(what we believe to be) the facility or propensity of things” (the parenthe-

34



sized phrase is not in the Latin). But strictly speaking, of course, classicists
cannot conceive of this as a coordination of different kinds of probability,
since they allow only one kind of probability.

In the twentieth century, probability coordination was introduced as a
topic in its own right by David Miller, who argued, as a part of a Popperian
case against inductive inference, that a probability coordination principle
would have to be inconsistent. Commentators soon pointed out that there
are consistent versions of the principle, and some years later David Lewis
wrote what is still the most influential paper about the proper form of a
principle of coordination and its role in scientific inference, conjecturing
that such a principle “capture[s] all we know about [physical probability]”
(Lewis|1980).

Modern attempts at a formulation of a probability coordination princi-
ple contain two elements not present in Leibniz’s maxim. First is the modifi-
cation interpolated by Hacking above: the principle commands that you set
your subjective probabilities equal not to the corresponding physical prob-
abilities, but to what you believe the values of those probabilities to be, or
more generally, to the mean of the different possible values, weighted by
your subjective probability that each value is the correct one. Such a prin-
ciple might be loosely interpreted as saying that you should do your best to
set your subjective probabilities equal to the physical probabilities.

Second is a restriction of the range of the principle: when you possess
certain kinds of information, probability coordination is not necessarily ra-
tional. Suppose, for example, that you know for some science-fictional rea-
son that the coin you are about to toss will land heads. Then you should
set your subjective probability for heads equal to one, not equal to the phys-
ical probability of one half. The information that the coin will land heads
is what Lewis calls inadmissible information; in the presence of inadmissible
information, the principle of probability coordination does not apply. Note

that what is admissible is relative to the outcome in question; knowing how

35



the coin lands is admissible when I am setting my subjective probability for
the outcome of a different toss.

An attempt at a probability coordination principle might, then, have the
following form: your subjective probability for an event e, conditional both
on the proposition that the physical probability of e is p and on any admissi-
ble information k, should be set equal to p. (Your unconditional subjective
probability for e, then, will be the weighted sum of the physical probabil-
ities, as mentioned above.) In symbols: if your background knowledge is

admissible, then set
C(e|tk) = P,(e),

where C(-) is your subjective probability distribution, ¢ is the proposition
that the correct physical probability distribution for e is P;(-), and k is any
other admissible information.

Note that propositions such as ¢ are normally consequences of two kinds
of fact: probabilistic laws of nature, and some properties of e in virtue of
which it falls under the laws. For example, if e is the event of a particular
coin toss’s landing heads, then the law might be All tosses of a fair coin land
heads with physical probability one half and the additional fact the fairness
of the coin in question. In what follows I assume that the latter facts are part
of the background knowledge, and that ¢ simply asserts some probabilistic
law of nature, as suggested by the above notation.

The most puzzling aspect of the probability coordination principle is the
nature of admissibility. Lewis proposes what might be called a working def-
inition of admissibility (he says that it is a “sufficient or almost sufficient”
condition for admissibility) on which information is admissible either if it is
historical—if it concerns only facts about the past up to the point where the
principle is invoked— or if it is purely probabilistic, that is, if it is informa-
tion about physical probabilities themselves.

The characterization is problematic for two reasons. One difficulty is

explicitly identified by Lewis and for many years prevented him from ad-
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vancing the frequency-based theory of physical probability (described un-
der Frequentism earlier in this entry) that he wished to give. As noted above,
when you are coordinating probabilities for a given outcome, your ought to
count information about the future occurrence or otherwise of that outcome
as inadmissible. It turns out that frequency-based probabilities provide in-
formation of this sort. Lewis, then, has three choices. The first is to revise
the working definition of admissibility so as to rule out such information,
in which case information about physical probabilities will be inadmissible
and the resulting probability coordination principle useless. The second is to
stay with the working definition of admissibility, allowing the information
provided by frequency-based probabilities to count as admissible by fiat. It
can be shown, however, that the resulting principle—that is, Lewis’s original
principle—clearly sets the wrong subjective probabilities in certain circum-
stances: there are certain complex facts about the future that a frequency-
based probability distribution entails cannot obtain, yet assigns a non-zero
probability. If such a probability distribution is known to be the correct
one, then the right subjective probability for the facts is zero, but proba-
bility coordination results in a non-zero subjective probability. The third
option is to abandon probability coordination as such. Lewis takes the third
way out, proposing a new kind of probability coordination principle that
has the form (using the notation from above) C(e|tk) = P,(e|t). Strevens
(1995) points out that both Lewis’s new principle and his original princi-
ple are consequences of a more general probability coordination principle
according to which conditional subjective probabilities should be set equal
to conditional physical probabilities. This principle yields Lewis’s original
principle when information about physical probability distributions is ad-
missible and Lewis’s new principle when it is not.

A different problem with Lewis’s working definition of admissibility is
that it makes no sense of probability coordination in deterministic systems.

If you conditionalize on the exact initial conditions of a coin toss, you ought
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not to set your subjective probability for heads to the physical probability
of heads, one half, but either to zero or to one depending on whether those
particular initial conditions cause the coin to land heads or tails. If a prob-
ability coordination principle is to be applied to the probability of heads,
exact information about initial conditions must therefore be ruled inadmis-
sible. Lewis’s working definition of admissibility counts initial conditions,
like all historical facts, as admissible.

Lewis does not regard this as a problem, since he agrees with the propen-
sity theorists that in deterministic systems there could be only ersatz physical
probabilities. Even if this is correct as a metaphysical doctrine, however, it
remains a matter of fact that we coordinate our subjective probabilities with
such ersatz probabilities all the time, as when we form expectations about
the outcomes of a tossed coin. Whatever you call it, then, there is a co-
ordination principle for systems such as gambling devices that apparently
has the same form as the genuine probability coordination principle. (See
Loewer (2001) for a reconciliation of Lewis’s account of physical probability
and probability coordination in deterministic systems.)

There is clearly more work to be done elucidating the form of the prob-
ability coordination process, and in understanding admissibility in particu-
lar. A different project attempts to justify the practice of probability coordi-
nation, by giving an a priori argument that subjective probabilities should
track physical probabilities, or beliefs about such. Lewis himself says no
more than that he can “see dimly” why probability coordination is ratio-
nal. Howson and Urbach (1993) attempt a full-blown justification. Strevens
(1999) argues that Howson and Urbach’s argument appeals implicitly to a
principle of indifference, and goes on to make a case that there is a strong
parallel between providing an a priori justification for probability coordina-
tion and providing an a priori justification for inductive inference, that is,
solving the problem of induction.

A final question about the relation between epistemic and physical prob-
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ability was adumbrated above (see Subjectivism): why should the same for-
mal structure be central to our understanding of two such different things
as the production of the probabilistic patterns and the nature of inductive

reasoning?
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