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Abstract

This paper justifies the inference of physical probabilities from symmetries.
I supply some examples of important and correct inferences of this variety.
Two explanations of such inferences—an explanation based on the princi-
ple of indifference and a proposal due to Poincaré and Reichenbach—are
considered and rejected. I conclude with my own account, in which the
inferences in question are shown to be warranted a posteriori, provided that
they are based on symmetries in the mechanisms of chance setups.

Note

This version of the paper has been updated to use the terminology and
notation of Bigger than Chaos (Harvard University Press, 2003). The figures
have been revised accordingly, and made somewhat prettier.
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Consider a perfectly symmetrical dodecahedron (figure 1). Paint one face
red, and it may be used as a die. What is the probability that such a die, when
tossed, lands red face up? Without having touched, or even laid eyes on, such
an object, it is possible to give a firm answer: the probability is one in twelve.
Find such a die, and experience will bear out this assertion. The red face will
land uppermost roughly one-twelfth of the time. We have made, apparently,
an a priori inference to a fact about the world.

Figure 1: A dodecahedral die

How is it that we are able to infer the probability with such success?
The conventional answer to this question is that we invoke a rule called the
principle of indifference (or the principle of insufficient reason).1 This rule

1. For early (eighteenth century) examples of the use of a principle of indifference to
calculate probabilities concerning celestial objects, see van Fraassen (1989), 297–8. Laplace
is among those cited; however, in his more philosophical writings, he seems to have realized
that, inasmuch as probabilities generated by indifference are determined by ignorance alone,
they may not correspond to real physical probabilities. Exegesis is difficult because Laplace’s
determinism inclined him against the existence of physical probabilities, and also because
(perhaps for this very reason) he often failed to clearly distinguish physical and epistemic
probability (see Hacking (1975), 131–3 for a discussion of the ways that Laplace did and did
not make this distinction).

More recently E. T. Jaynes (1983) has applied a principle of indifference to determine
probabilities in chance setups. In his most philosophical moments, Jaynes, like Laplace,
admits that probabilities determined by ignorance are not necessarily the correct physical
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tells us that, in the absence of any known reason to assign two events differing
probabilities, they ought to be assigned the same probability. Applied to the
dodecahedral die, the principle allows us to reason as follows. The die may
land with any of twelve faces uppermost. We know nothing that distinguishes
these twelve possibilities, so we must assign each an equal probability. Since
the sum of these probabilities must equal one (some face must be uppermost),
each possibility should be assigned a probability of one-twelfth.

This explanation of our probabilistic prowess cannot be right. The princi-
ple of indifference is not even the right kind of rule to explain our successful
inference. It purports to tell us which probabilities are rational given our
ignorance, helping us to do the right thing under adverse epistemic circum-
stances. But our achievement is not mere rationality; it is truth. We infer
the correct physical probability for the event in question. This suggests that
our inference is not based on ignorance at all, and thus not based on a prin-
ciple of “indifference” or “insufficient reason”. Two arguments support this
suggestion.

First, it is surely the case that we can never reliably get from ignorance
to truth, because the nature of the world is independent of our epistemic
deficits. The fact we do not know anything about A does not constrain the
way things are with A.

Second, in the sort of case under discussion, we have an inferential dis-
position that is incompatible with the claim that our inference is based on
ignorance. The disposition is as follows. Suppose that you are certain that
some particular dodecahedral die is absolutely symmetrical, externally and
internally (an internally symmetrical die is not “loaded”). Suppose also that,
on repeated throwing, the red face of this die lands uppermost one-half of the

probabilities. (They are correct only if the problem is “well posed”, but knowing that the
problem is well posed requires some kind of real knowledge about the situation.)

These admissions of the epistemological limitations of the indifference principle only
make it the more puzzling that our symmetry-based estimates of probability are so often
correct.
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time. Should you revise your estimate of the probability? Not at all. Given
the symmetry of the die, the probability of a red face must be one-twelfth.
That the frequency of red faces is one-half can only be an accident. This
inferential disposition—our refusal to revise the probability in the light of
the new data—suggests that our knowledge of the probability, far from being
based on ignorance, is based on knowledge so certain that it overrides any
amount of information about outcomes. In the case described, that can only
be our certain knowledge of symmetries.2

The knowledge from which we infer the probability, then, is our certain
knowledge of the symmetry of the die. It is the purpose of this paper to
explain, and to justify, the rule of inference that takes us from knowledge
of physical symmetries to knowledge of actual physical probabilities. (I
stress once more that this rule is very different from the principle of indiffer-
ence, which takes us from symmetries in our knowledge—or more exactly,
ignorance—to rational probabilities.)3 I call the inference from symmetries
to probabilities non-enumerative statistical induction, or nei for short.4 Enu-
merative statistical induction, by contrast, is that form of reasoning in which
we infer probabilities from frequencies of outcomes, as when we conclude
that smoking causes cancer with a certain probability by perusing the relevant
medical statistics.

The paper has four parts. In the first part I show that non-enumerative
statistical induction plays an important role in several sciences. Thus the

2. Of course, we are not normally absolutely certain about symmetries. A frequency of
red faces significantly different from one-twelfth will erode our belief in the symmetry of
the die. But this is equally good evidence that we are sure of the link between probability
and symmetry. In any case, the following more general claim seems correct: our subjective
probability that the physical probability of a red face is 1/12 is never lower than our subjective
probability that the die is symmetrical.

3. “Rational probabilities” can mean rational subjective probabilities (as it does for
the objectivist Bayesian) or logical probabilities, in the sense of Keynes (1921) and Carnap
(1950).

4. There may be cases of non-enumerative statistical induction other than those in which
we infer probabilities from symmetries. But I know of none.
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problem extends beyond the gaming halls. The second part considers the
principle of indifference in more detail, the third an alternative account of
nei due to Henri Poincaré and Hans Reichenbach. The final part presents my
own account of nei.

1. The Success of Non-Enumerative Statistical Induction

It might be thought that successful nei is confined to a few unimportant
cases. In what follows, I show that nei is widespread and that it has been and
is essential to the sciences.

Gambling Devices: Perhaps the most conspicuous success of nei—though
not the most important—is its use to infer the values of the probabilities
associated with gambling setups, such as the tossed coin, the thrown die, the
roulette wheel, and the urn full of colored balls. Without any more empirical
information than that concerning the evident symmetries of these devices, we
can infer exact probabilities for various outcomes. (For example, we infer a
one-half probability for a tossed coin’s landing heads, a three fifths probability
for drawing a red ball from an urn containing fifty balls, thirty of which are
red, and so on.)

Furthermore, as noted above, if we are convinced that our information
about the symmetry is correct (i.e., that there is not some hidden asymmetry,
as in a loaded die), then we will cling to our inference about the probability
even given vast amounts of unfavorable enumerative evidence. For example,
if I am sure that a coin is perfectly balanced and tossed fairly, no run of heads
will be long enough to force me to abandon my belief that the probability of
heads is one-half (see note 2).

Statistical Mechanics: The nineteenth century development of statistical
mechanics relied on certain probabilistic assumptions about the movements
of molecules, in particular, the assumption that in a given interval of time,
all relevantly similar molecules are equally likely to be involved in a collision
(rather as though the molecules that are to collide are determined by making
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selections from an urn). These assumptions, which allowed the derivation of
the ideal gas law, various other parts of the kinetic theory of gases, and the
second law of thermodynamics, were obviously not based on enumerative
induction. No one was able to tabulate the frequencies of molecular collisions;
on the contrary, the acceptance of the atomic theory of matter was largely
brought about by the success of statistical mechanics. The probabilistic
assumptions that provided the foundation for early statistical mechanics
can only have been inferred by nei. (For a historical sketch of the role of
such assumptions in early statistical mechanics, see Ehrenfest and Ehrenfest
(1959).)

The foundation (though not necessarily the truth) of these inferences has
since been questioned (Sklar 1993). But although physicists and philosophers
have done their best to find other foundations for our knowledge of the
probabilities of statistical mechanics, the fact remains that the distribution
of those probabilities was first successfully inferred from symmetries. No
further work on the foundations of statistical mechanics can erase this fact;
the best the nei skeptic can do is to claim that the inference was a lucky
accident.

Darwinian Explanation: Darwin’s “fitness” is a probabilistic concept, mea-
suring (roughly) the likelihood that an organism will survive and proliferate.
(Thus survival of the fittest is not guaranteed: an unfit but lucky organism
may be the one whose offspring inherit the earth. But it is overwhelmingly
probable that the fitter organism will bear this responsibility. See Mills and
Beatty 1979.)

Darwinian explanation of the predominance of some trait usually takes
as a premise that that trait confers or conferred greater fitness than the
alternatives.5 This premise is a premise about relative values of probabilities.
Because the species that bore the traits in question may be long extinct,

5. Sometimes the trait itself does not increase fitness, but is correlated with some other
fitness-increasing trait.
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enumerative tests of these probabilistic premises are not usually possible. The
probabilities (or at least, their relative magnitudes) must be inferred by way
of some kind of non-enumerative induction.

An example will show that this non-enumerative inference of probabilities
is at least sometimes based on symmetries. Consider the claim that the fitness
of large-beaked Galápagos finches increases (relative to that of other finches)
as the number of large seeds increases (relative to smaller seeds). The reason
for the relative increase in fitness is this: it is better for a small-beaked finch
to find a small seed, because the small beak cannot crack a large seed, but it is
better for a large-beaked finch to find a large seed, because large finches need
the extra nutrition to maintain their large bodies. As the proportion of large
seeds increases, the chance that the next seed a finch encounters will be large
increases. Thus the probability of finding a favorable seed increases for large
finches and decreases for small finches.

The argument for the claim about finch fitness, then, is based on a claim
about probability: the more large seeds, the greater the probability of finding
one. It is obvious to anyone that this claim is true. The reasoning involved
is very similar to that concerning an urn full of balls (the urn is the island,
the balls, seeds). As such, it is an instance of inferring probabilities from
symmetries. Incidentally, in the case described, years of careful fieldwork have
provided enumerative evidence that supports the non-enumerative inference
made in a few seconds by the reader of this paper (Weiner 1994).

The successes just described strongly suggest that there is some robust
procedure by which we go from symmetries to probabilities, and thus to
frequencies, with considerable success. But what is that procedure, and why
does it work?

2. Inference From Epistemic Symmetries

The principle of indifference may be seen as the consequence of putting the
following constraint on the assignment of probabilities to a set of mutually
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exclusive outcomes:

Symmetries in the probability distribution ought to mirror symmetries
in our knowledge concerning the outcomes.

The principle is not much help when we have an abundance of relevant infor-
mation, such as a mass of statistics, for then there are no useful symmetries
in our “knowledge space”. The less we know, the more the rule comes into
its own. When we have no information to distinguish two outcomes, it takes
the familiar form: assign two possibilities concerning which we are equally
ignorant, equal probabilities.

There is a standard objection to the principle of indifference. The princi-
ple, it is claimed, cannot be phrased so as to pick out a unique probability
distribution. The argument is usually presented as entailing the inconsistency
of the principle, as follows: because many different probability distributions
satisfy the principle, it simultaneously recommends the ascription of con-
flicting probabilities. Thus it cannot be taken seriously as an inferential
rule.

A well-known example that generates an inconsistent ascription of prob-
ability is that of the cube factory.6 The factory produces cubes with edge
length of up to two centimeters. What is the probability that the next cube
produced has edge length of less than one centimeter? An answer: we know
nothing about the edge length, except that it is less than 2 cm; thus, our
probability distribution over the edge length should be distributed evenly
over the interval between zero and two. It follows that the chance of the next
cube having side length of less than one is one-half. Another, inconsistent,
answer: we know nothing about the cube’s volume, except that it is less than
8 cc; thus, our probability distribution over the cube’s volume should be
distributed evenly over the interval between zero and eight. It follows that

6. The example is taken from van Fraassen (1989). It is based on the work of Joseph
Bertrand (1889).
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the chance of the next cube having a volume of less than one—that is, the
chance that it will have a side length less than one—is one eighth.

It is possible to fend off arguments of this sort by imposing an extra
constraint on the probability distribution, that it be invariant under certain
transformations. A case can be made for this requirement by appealing to
symmetries, which is certainly in the spirit of the original principle—indeed,
in recent years, something of a philosophical arms race has developed in
this area. The proponents of indifference have suggested further rules for
determining relevant symmetries, while their opponents have offered new
counterexamples to those rules. (For a good summary, with references, see
van Fraassen 1989, chap. 12.)

The entire dispute is, I believe, irrelevant to the problem posed at the
beginning of this paper. The argument about the cube factory concerns the
existence of a method for picking out unique probability distributions, and
(less explicitly) the rationality of such a method, should it exist. In the case
of the die and the other examples described in the last section, these issues
simply do not arise.

First, we already know that, in the cases I have described, it is possible to
arrive at a unique probability distribution. Upon viewing the dodecahedral
die for the first time, we immediately see that the probability of any face
landing uppermost is one in twelve. The problem is not whether this can be
done, but how we do it.

Second, the question of the rationality of the one in twelve probability is
quite secondary. What is striking is that the probability we choose is correct.
It is this fact that must be explained. By contrast, there is no such fact to
be explained in the cube factory scenario, since we do not know the correct
probability distribution over cubes.7 (To gain such knowledge we would need

7. I take it that this claim is uncontroversial. Even proponents of the principle of indif-
ference do not think that the principle gives us the correct physical probability distribution
over cubes (see note 1).
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to look inside the factory, at the very least.)
In short, there are two quite distinct problems. The first, exemplified by

the case of the cube factory, is the problem of what probabilities, if any, can be
rationally ascribed to events we know nothing about. (The most interesting
consequence of solving this problem would be the justification of certain
prior probability distributions for Bayesian inference; see Jeffreys (1939),
Rosenkrantz (1981), and Jaynes (1983).) The second problem, exemplified
by the case of the dodecahedral die, is the problem of how we successfully
infer physical probabilities from symmetries. I have argued above that this
inference must be based on knowledge, not ignorance. Physical probabilities
are inferred from physical symmetries, that is, symmetries that are not in the
mind but in the world.

3. Inference From Super�cial Physical Symmetries

A proposal due to Henri Poincaré (1905) and adopted in a modified version
by Hans Reichenbach (1949) founds nei on physical symmetries. This pro-
posal is similar in certain ways to my own, but it is inadequate, I will argue,
because it takes for granted, without explaining, an important inference from
symmetry to probability.

Poincaré’s account of nei is clearest in his treatment of the roulette wheel.
The result of a game on the wheel, Poincaré assumes, is determined by the
wheel’s final position.8 The position is represented by a real-valued variable
h ranging between 0 and 2p. Whether the wheel produces a red or a black
number, then, is determined by h. Call values of h that correspond to red
and black numbers respectively “red” and “black” values. Poincaré notes that,
in virtue of the physical symmetries of the roulette wheel (or more exactly,
of the way it is painted), red and black values of h form intervals of equal

8. Not all of Poincaré’s comments are true of real roulette wheels. It is perhaps best to
interpret him as describing a simplified roulette wheel, in which there is a fixed pointer
instead of a ball. When the wheel comes to rest, the number next to the pointer wins.
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size that alternate rapidly as h goes from 0 to 2p. (See figure 2, in which the
shaded regions represent red values, the white regions black values, of h.)
From this symmetry—that is, from the physical symmetry of the pattern on
the wheel—Poincaré claims we may infer a one-half probability that a red
number will be produced.

Θ

Figure 2: The probability of a red number is equal to the proportion of the
area under q(h) that is shaded. After Reichenbach (1949).

His reasoning is as follows. Let q(h) be the physical probability dis-
tribution over h, which is unknown to us. The probability of obtaining a
red number will be given by summing the probabilities that h falls into any
particular “red” interval. More formally,

p(red) = ∫
2p

0
f (h)q(h)dh

where f (h) is equal to one for “red” values of h, and zero otherwise.
Now, provided that

1. The red and black intervals of h are quite small, and so alternate rapidly,
and

2. q(h) is fairly smooth, in the sense that it does not fluctuate rapidly,

the above expression for the probability of red will be approximately equal to
the ratio of red to black intervals, that is, one-half. (More precisely, the ratio
is one to one, which corresponds to a probability of one-half.) This result
holds because (a) a smooth q(h) will remain approximately constant over
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any two neighboring (red and black) intervals, and (b) the ratio of any two
such neighbors is the same (one-half). We may be quite ignorant about the
details of q(h), then, but provided we know that it is fairly smooth, we can
proceed from the symmetry of the roulette wheel’s color scheme to a reliable
estimate of the probability of a particular color.

The usual objection to symmetry-based approaches, as applied to the
Poincaré-Reichenbach approach, would be phrased as follows: why choose
h as the parameter with which to calculate the proportion of red to black
outcomes, when there are many other parameters that would deliver different
symmetries, and thus different probabilities? Poincaré and Reichenbach have
a ready answer at their disposal: we choose h because it is q(h) that we know
to be relatively smooth. (Thus the method for nei is as follows: find a h∗ for
which q(h∗) is smooth, and let the ratio of red to black in f (h∗) dictate the
probability.)9

The difficult question for Poincaré and Reichenbach concerns our knowl-
edge of q(h). How do we reach the conclusion that q(h) is relatively smooth?
The intuitive answer is that we expect q(h) to be smooth because the roulette
wheel has perfect circular symmetry. In fact, we do far better than this: from
the symmetry of the wheel, we infer that the probability distribution over
h is uniform, that is, that the probability is the same that any h will be the
wheel’s final resting place. (To see that we are in fact inclined to reason in this
way, consider what happens when the symmetry is broken. If the wheel were
redesigned with little braking pads under the red sections, our estimate of
q(h) would no longer be uniform, or even, in the relevant sense, smooth.)

Thus our knowledge of q(h) is itself grounded in the symmetry of the
roulette wheel. It seems that the wheel is not the only thing that is going
round in circles. To make progress, Poincaré and Reichenbach must explain
the basis of the inference that q(h) is smooth.

9. Note that if h∗ is a parameter for which red and black intervals are not equal, then
q(h) and q(h∗) cannot both be “fairly smooth” in the required sense.
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Poincaré attempts to avoid this task by pointing out that, as the red and
black intervals become narrower and narrower and so alternate more and
more rapidly, q(h) needs to be less and less smooth. In the limit, he argues, it
is enough to suppose that q(h) is continuous, which is, he contends, surely a
reasonable assumption. But “in the limit” here means “as the number of red
and black sections on the wheel increases to infinity”. Thus the assumption
of continuity is relevant only to a wheel divided into infinitely many red and
black sections. As Reichenbach sees, that is not the problem we face, and
routinely solve, in real life. There are thirty-six red and black sections on the
(simplified) wheel, no more.

Reichenbach does not attempt to solve the problem. He simply points out
that the application of nei to the wheel depends on an assumption about the
smoothness of q(h). He thus explicitly neglects, as Poincaré has implicitly
neglected, the point at which nei truly operates: our inference from the
symmetry of the wheel to the smoothness of q(h).10

4. Inference From Physical Symmetries in the Mechanism

It is my claim that nei is based on symmetries in the mechanism of the
chance setup in question. This position is, I think, intuitively appealing; in
this section I will show that it is also correct.11

10. It is worth pointing out a further problem with the Poincaré-Reichenbach proposal,
closely related to that just described. The proposal depends on there being two probability
distributions that each describe the outcome of the same trial, one of which is continuous
(for the wheel, h). In many important cases, there is no such continuous variable. What
continuous variable, for example, describes the outcome of a coin toss, or a drawing from an
urn? Or a spin of a non-simplified roulette wheel in which each colored section has a hollow
to capture the ball?

11. The approach taken in this section is similar in some respects to the “method of
arbitrary functions” that emerged from Poincaré’s work, especially as developed by Eberhard
Hopf (Hopf 1936; for summaries in English see von Plato (1983) and Engel (1992)).

Hopf examines, as I do, the behavior of the function mapping initial conditions onto
outcomes, and shows that for some gambling devices, Poincaré’s insight can be applied.
However, like Poincaré, Hopf is interested only in the behavior of these functions as certain
parameters (the number of red and black sections or the initial velocity of the wheel)
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The first section shows why, physically, there is a correlation between
certain symmetries and certain probabilities. The next two sections show
how this physical fact serves as the basis for an account of nei.

4.1 Roulette Once More

Consider the simplified roulette wheel. Assume for now that the laws of
nature are deterministic, at least in the form in which they apply to the
wheel. (I will later show that this assumption is not necessary.) It follows
that the outcome of any game on the wheel is fully determined by some set
of initial conditions. In any chance setup there will be several aspects of
these conditions that change from game to game; I will call these aspects
the IC-variables. In the case of the wheel the sole ic-variable is the speed
with which the wheel is initially spun; call it x. (Most setups will have more
ic-variables; however, I will not deal with the multivariable case in this paper.
There are no serious complications (as shown in Strevens (1996)).)

Suppose, then, that there is just one ic-variable x. Let e designate the
event of the wheel’s producing a red number. As a consequence of the
assumption of determinism, the laws of nature together with the mechanism
of the wheel determine a function he(x) which is equal to one just in case x
causes a red number to be obtained on the wheel, zero otherwise.

approach infinity. Since these parameters do not, in fact, approach infinity, the physical
significance of Hopf ’s work is at best unclear.

Eduardo Engel has written a monograph extending Hopf ’s work in many ways (Engel
1992). The chief mathematical technique is, as in Hopf, to let parameters approach infinity.
But Engel also arrives at some results concerning the rate of convergence on the probability as
the parameters increase (for certain kinds of initial condition distribution functions). These
results do have physical significance. His section on coin tosses is a case in point: he shows
that, for realistic parameters and a sufficiently smooth initial condition distribution function,
the probability of heads will be very close to one-half. This work has a rather different flavor
from mine; there is much talk of convergence (a property of the sequences generated when a
parameter goes to infinity), but nowhere is there a discussion of what I call microconstancy
(a property of real physical systems in which parameters are fixed). Also, Hopf and Engel are
not concerned with the epistemological problem addressed here. They seek to explain why
the physical probability of a red value is one-half, not how we come to know this fact.
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Observe that he(x) has the same sort of symmetry as the function f (h)
introduced in the last section. “Red” and “black” values of x form rapidly
alternating bands; neighboring bands are of approximately equal size. (See
figure 3. Note that in he(x), unlike f (h), the red and black intervals slowly
narrow. But they do so at the same rate, so that the ratio of a red interval to
a neighboring black interval remains one to one.) The rapid alternation of
he(x) is a consequence of the fact that we can always change the outcome of
a spin of the wheel by spinning a little faster or a little slower. The equal size
of the black and red bands is a consequence of the physical symmetry of the
wheel, in particular, of the fact that at any point in any spin, the wheel takes
approximately equal time to rotate through a red segment as it does to rotate
through a black segment. I will say that such an he(x) is microconstant with
ratio 0.5 (see the appendix for a formal definition of microconstancy).

Ω

1
heHΩL

Figure 3: A portion of the function he(x) (equal to one when x produces a
red outcome, otherwise zero)

Despite the similarity between he(x) and f (h), they are not to be con-
fused. Whereas he(x) expresses facts about the mechanism of the wheel, f (h)
expresses facts only about its paint scheme.

Now consider the probability distribution q(x) over the ic-variable x.
(What I have to say is neutral with respect to the interpretation of q(x). My
only assumption is that there is such a distribution. If nothing else, we can
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always take q(x) to represent frequencies of actual values of x.)12 As with
he(x) and f (h), there is an analogy between q(x) and q(h), but it is not
exact: a value of h describes an outcome of a game on the wheel, while a value
of x describes an initial condition of such a game.

The probability of the wheel’s producing a red number can be derived
from q(x) and he(x). It is simply the total probability of the “red” values
of x (i.e. those values of x that result in a red number). The function he(x)
tells us which values of x are red; the density q(x) tells us how likely these
values are. If e is the event of obtaining a red number,

p(red) = ∫
b

a
he(x)q(x)dx

where a and b are the minimum and maximum possible values of x.
We can now apply Poincaré’s purely mathematical observation to he(x)

and q(x). For any sufficiently smooth q(x), the probability of red is—
because of the geometry of he(x)—approximately equal to one-half. Thus,
provided that we know that q(x) is reasonably smooth, we need know noth-
ing more to infer a probability for e of one-half. We can use the micro-
constancy of he(x) to parlay some very general (probabilistic) information
about the initial condition x into an exact value for the probability of a red
number.13

The same sort of treatment can be applied to any of the other familiar
gambling devices (the die, the urn full of balls, a tossed coin, etc.). In each
case, due to the symmetry of the apparatus, the function he(x) is micro-
constant: it characterized by thin, evenly proportioned stripes (provided, of

12. A frequency interpretation of the initial condition distribution function introduces a
technical difficulty dealt with in Strevens (1996).

13. If you are inclined to doubt that croupiers’ functions q(x) are smooth, consider this:
if the functions are not smooth in the relevant sense, it would very likely be the case that
different croupiers would turn up red numbers with different frequencies. Casinos have
spent much time and money ensuring that this is not the case; thus, for gambling devices at
least, it is reasonable to suppose that the relevant functions q(x) are smooth. See the next
section for further discussion.
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course, that e is one of the basic outcomes, such as a six being thrown or a
particular ball being drawn). On the assumption that the relevant q(x) is
smooth, we can infer that the probability of the event e is 1/n, where n is the
number of basic outcomes. (A more formal, more general treatment is given
in the appendix.)

This result provides a basis for nei, as follows. Given a chance setup for
which

1. We have reason to think that the initial conditions are distributed
smoothly, and

2. We can infer from the symmetries of the setup mechanism that he(x)
is microconstant, with constant ratio p,

we can infer that the probability of an e event is p.
What is the role of the symmetries in such an inference? The symmetries

do not themselves tell us the values of probabilities. Rather, they allow us to
convert a very vague, very general piece of knowledge about probabilities—
that x is smoothly distributed—into a very specific piece of information, an
exact value for the probability of an e event.

In the next two sections I consider the circumstances under which (a)
and (b) above hold true, that is, the circumstances in which successful nei is
possible.

4.2 Knowledge of the Distribution of Initial Conditions

Non-enumerative statistical induction or nei requires a probabilistic premise,
namely, that the probability distribution over the relevant initial conditions
is “smooth”. Where could this information come from? How can we know
that some initial condition distribution function q(x) is smooth? How can
we come to have knowledge of the probabilistic distribution of an ic-variable
such as the speed with which a roulette wheel is spun? Knowledge of q(x)
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must be supplied either by enumerative induction or by non-enumerative
induction.14

In the case of the roulette wheel, some kind of enumerative induction is
probably at work. We simply know from experience that human actions such
as the twirl of a wheel produce results that are smoothly heaped around some
average value. (The experience is often gained while trying to produce results
that require a far more finely honed distribution.)

We might also be able to arrive at a non-enumerative inference to the
effect that q(x) is smooth, if we knew enough about human physiology that
we had some idea about the causes of variation in spins. This inference would
depend on the distribution of some set of physiological initial conditions,
which would have to be inferred in turn. At some point some enumerative
induction must be done to get non-enumerative induction off the ground.

This initial enumerative induction might be on a grand scale. Call the
kinds of variables in terms of which we usually work our “standard” vari-
ables.15 It seems to be the case that, for whatever reason, our standard vari-
ables are usually smoothly distributed. If we go ahead and generalize from
this observation (by enumerative induction), we arrive at the conclusion that
most standard variable distributions are smooth. We may consequently take
ourselves to have empirical grounds for adopting a revised and differently
deployed “principle of insufficient reason” of the following form:

In the absence of any reason to think otherwise, assume that any standard
variable is fairly smoothly distributed.

14. Leonard Savage (1954) has suggested, in connection with Poincaré’s explanation of
nei, that a distribution such as q(x) can be interpreted as a subjective probability distribution.
But while this might explain the fact that we agree on a probability for red (because we all
have a smooth subjective probability distribution over x), it cannot explain the objective
correctness of the agreed-on answer (nor did Savage mean it to do so).

15. One way of characterizing standard variables is as follows: they are those variables
that induce measures directly proportional to the si units. Thus inches are standard measures
of length, while inches* are not, where an object’s length x∗ in inches* is derived from its
length x in inches as follows: x∗ = sin x + x.
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Let me stress that I am not proposing that our “standard” variables have any
special logical status. They are simply the variables with which we prefer
to operate, and which are, conveniently for us, for the most part smoothly
distributed.

Note that this principle of insufficient reason is defeasible. Sometimes
we have sufficient reason to think that a particular standard variable h is
not smoothly distributed. Consider a h determined by a mechanism that,
given a smoothly distributed q(x) as input, produces a ruggedly distributed
probability distribution p(h) over its output. An example is my roulette
wheel with brakes. We clearly ought not to assume that such a h is smooth.

4.3 Knowledge of Microconstancy

The second premise required for nei is that the relevant he(x) is micro-
constant with some constant ratio p. Such information must come from
knowledge of the probabilistic mechanism in question together with knowl-
edge of the laws of nature. There arises the issue of exactly which aspects of
the mechanism and laws are relevant, a question made more interesting by the
fact that we seem to get by with a small portion of the complete information.
(Physics failures may be gambling adepts.)

What is necessary is whatever knowledge guarantees the existence of rele-
vant symmetries in the operation of the mechanism, for example, whatever
entails that a spinning coin takes about the same time for each half-revolution,
or that a spinning roulette wheel takes about the same time for each 1/36th of
a revolution. Such knowledge comes in two complementary parts: (a) what
the laws of motion care about (distribution of mass, brake pads), and (b)
what the laws do not care about (the color of a segment of the wheel, or the
image on one side of a coin). The use of these facts to infer microconstancy
does not require us to attend to the exact form of the dynamical laws of nature.
Indeed, the facts remain the same (for the most familiar mechanisms at least)
whether the laws of nature are Aristotelian, Newtonian, those of medieval
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impetus theory, or those of quantum mechanics. Thus the non-physicists’
evident skill at pinpointing certain probabilities. (This observation has a
further consequence: insofar as the laws of, say, evolutionary biology are
based on probabilities founded in microconstancy, those laws do not depend
on the details of the laws of physics, but only certain very general symmetries
of the laws. See Strevens (1996) for the implications of microconstancy for
reduction.)

That microconstancy is found in common gambling devices is reasonably
clear. What, however, of ecosystems? What mechanism do we examine in
order to divine a probability, and what symmetries do we look for? I have
answered these questions in some detail elsewhere (Strevens 1996). The
method, very roughly, is to regard the entire ecosystem as the mechanism,
and then to ask which things affect, and which things fail to affect, the
movement of the mechanism’s parts—the falling seeds, the foraging finches,
and so on. Exact probabilities may not be forthcoming, but qualitative results
(concerning, for example, the relative advantages of large and small beaks)
are within reach.

Finally, how can we apply this method of nei to chance setups involving
indeterministic mechanisms? In such cases, the effects of the indeterminism
can be represented by an extra ic-variable w, representing the “error” caused
by quantum fluctuations. This leaves us with a function mapping initial
conditions to outcomes that is, in effect, deterministic. We may examine
the symmetries of the mechanism as before, and, provided that q(w) is
sufficiently smooth, infer a corresponding probability.

5. Conclusion

Due to the microconstancy of certain mechanisms, and the smoothness of
the distributions of certain variables, there is a correlation, in our world,
between symmetry and probability, and thus (in a world where frequencies
usually reflect probabilities) between symmetry and frequency.
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Our species has evidently picked up on this correlation, whether through
learning or natural selection, and has exploited it for some time. Yet the
reason for the correlation has not been clearly understood. It is because of
this lack of understanding, I suggest, that the principle of indifference has
been able to exert its hold. In what became the paradigmatic probabilis-
tic experiments—those involving gambling devices such as the tossed coin
and die—there is a direct correspondence between the symmetries in the
mechanism and the symmetries in our knowledge about outcomes. Previ-
ous thinkers correctly saw that symmetries lead to reasonable beliefs about
probability, but in framing the rule that enshrines this sort of inference, they
wrongly took the epistemic symmetries, not the physical symmetries, as the
proper source of these beliefs. In those cases where the beliefs turned out to
be true, it appeared that nei provided a priori knowledge of probabilities.

The truth about nei is not as glamorous as that. Probabilities are not
conjured from nothing, but are introduced in the premises of the inference
in the form of an assumption about the distribution of initial conditions.
Furthermore, empirical knowledge plays, if anything, a greater role in careful
nei than in enumerative statistical induction, for nei is founded not just on
knowledge of initial condition distributions, but also on fallible, empirical
knowledge of the physical constitution of the relevant mechanism and of the
pertinent laws of nature.

Yet knowledge of probabilities inferred from symmetries is knowledge
acquired with little or no experiment in the traditional sense. It may not be
a priori, but it is not experimental, either. As such, the further philosoph-
ical and psychological study of nei has the potential to cast light on those
sciences—such as statistical mechanics, evolutionary biology, and certain
varieties of social science—in which experiment has played only a subsidiary
role.
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Appendix

Call a function he(f) indicating which values of an ic-variable f produce
a given outcome e, as described in the main text, an evolution function. I
provide in this appendix a more precise characterization of the mathematical
properties of evolution functions that make nei possible. For further details,
as well as a discussion of a realistic case (which requires a method for dealing
with multiple ic-variables), see Strevens (1996).

The strike ratio of an evolution function he(f) over an interval [x, y] of f
is the proportion of the interval for which he(f) is equal to 1.

An evolution function he(f)’s constant ratio index is determined as follows.
Consider a partition of the range of f into intervals [x, y]. Call such a partition
a constant ratio partition if the strike ratio for each [x, y] is more or less the
same. Call the size of the largest interval in such a partition the partition’s
constant ratio index (cri). Take the constant ratio partition of f that yields
the smallest cri q. That is the evolution function's constant ratio index. (If
he(f) is constant, its cri is zero.) If an evolution function has a cri of q, then
any segment of he(f) much longer than q will have the same strike ratio. In
such a case it makes sense to talk of the strike ratio of the entire evolution
function.

An evolution function is microconstant if it has a cri that is very small.
Theorem: If an evolution function is microconstant, with strike ratio

equal to p, then for any q(f) that is relatively smooth (that is, for any q(f)
nearly constant over most small intervals of f), the probability of e is approxi-
mately equal to p.
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