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ABSTRACT

Every model leaves out or distorts some factors that are causally connected to
its target phenomenon—the phenomenon that it seeks to predict or explain.
If we want to make predictions, and we want to base decisions on those
predictions, what is it safe to omit or to simplify, and what ought a causal
model to describe fully and correctly? A schematic answer: the factors that
matter are those that make a difference to the target phenomenon. There
are several ways to understand differencemaking. This paper advances a
view as to which is the most relevant to the forecaster and the decision-
maker. It turns out that the right notion of differencemaking for thinking
about idealization in prediction is also the right notion for thinking about
idealization in explanation; this suggests a carefully circumscribed version
of Hempel’s famous thesis that there is a symmetry between explanation and
prediction.
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1. Introduction

Virtually every scientific model is modified, simplified, massaged, somehow
bent out of shape. As a consequence, models typically misrepresent the
systems that they purport to depict. Such distortions are, when deliberate,
called idealizations. (I follow current philosophical practice, then, by using the
term idealization to refer to modifications of a model that not only withhold
truths but purvey falsehoods. For mere withholders, I use the standard term
abstraction.)

Not every misrepresentation is a legitimate idealization; to count as such,
and therefore to transcend mere error, it must display certain qualities. The
philosophy of idealization in science is concerned with the nature of those
qualities—with the rules or guidelines or tacit conventions governing idealization—
and with the ways in which the conventions can be exploited to advance the
interests of science, that is, with the scientific functions of idealization.’'

Both the form and the function of idealizations might be expected to vary
with the uses to which idealized models are put. An idealization that is quite
acceptable in a predictive model might, for example, be regarded as an ugly
flaw when that model is used to explain the very same phenomenon. Or so it
seems reasonable to suppose. In past work, I have written about idealization
in explanatory models (Strevens 2008, 2017, 2019). This paper is intended to
contribute to a discussion of idealization in the course of prediction.

I will have little to say about the benefits, or scientific functions, of predic-
tive idealization; I will rather be concerned with the question of form, that is,
the question of which idealizations are and are not permitted in the course of

making predictions. That said, my approach is in a certain sense functional.

1. For a range of approaches to the philosophy of idealization, the reader might consult
Cartwright (1983); McMullin (1985); Nowak (1992); Méki (1992); Sudrez (1999); Weisberg
(2007); Bokulich (2016); Appiah (2017); Elgin (2017); Potochnik (2017), to select invidiously
just a small portion of the research on the topic. The present paper, because of its relatively
noncommittal attitude to the question of the function of idealization, is compatible with the
spirit of much of this work.



One way to determine the conventions of idealization is to look at the scien-
tific literature and to see which idealizations are in fact tolerated or, indeed,
encouraged by working scientists. That is an approach I have taken in my work
on idealization in explanation. In this paper I take the other way, which is to
consider the task at hand—prediction—and to rule out as illegitimate those
idealizations that interfere with its successful performance. They may not be
the only impermissible idealizations, but they are presumably among them.
In what follows, then, I will be asking: which idealizations tend to impair, and
which idealizations leave unmolested, a model’s predictive prowess? That is

the question of safety in predictive idealization.

2. The Question of Safety

2.1 Causal Models

I confine myself, in this paper, to predictive models that are causal in character,
that is, models that attempt to predict phenomena using a representation of
certain causal structures that characteristically produce those phenomena.

The reason is as follows. The need to idealize creates a clear and specific
problem for causal predictive modelers. On the one hand, it seems that the
most accurate predictions will issue from an accurate representation of causal
structure. On the other hand, the very essence of idealization is to represent
causal structure inaccurately.

The same is not true of non-causal models; indeed, you might wonder
whether idealization raises any interesting philosophical problems for non-
causal models at all. A purely phenomenological predictive model—a model
that simply tries to replicate patterns observed in nature—can be more or less
accurate, more or less approximate, but there is no clear sense in which it can
be idealized in the usual sense of that word. I don’t claim that other kinds of
non-causal model can’t be idealized, but I do think that such idealizations

will raise problems that are quite different from the problems posed by causal



idealizations, and thus which ought to be dealt with separately.

I must say something, however, about models that “black-box” certain
elements of causal structure, representing only the net effects of these elements
and none of their workings. Virtually every scientific model contains some
black-boxing of this sort. Most microeconomic models, for example, black-
box the psychological processes that drive the decision-making of individual
economic actors. They tell you, for any given situation, what choice is made,
without saying anything about the way in which the decision is reached.

Scientists are nevertheless prone to talk of the idealization of black-boxed
processes in a way that implies causal misrepresentation. A microeconomic
model, for example, may be said to idealize by falsely representing humans as
perfectly rational. In fact, the model’s black box does not represent either ra-
tionality or irrationality; rather, it represents a situation-to-decision function
that is the one that would exist if the thinker were fully rational. It implies
full rationality, as it were, without spelling it out.” My discussion of and con-
clusions about predictive idealization will apply not only to explicit causal
distortion, but also to those many cases in which black boxes are considered

to incorporate implicit idealizations.

2.2 The Predictive Use of Causal Models

A causal model, as I understand it, is a structured set of representations
capturing certain aspects of the causal process that produces the “target phe-
nomenon” that is, whatever phenomenon the model is intended to predict
(or for an explanatory model, to explain). Such a model will represent, then,
initial conditions, boundary conditions, physical, biological, and psychologi-
cal structures, laws, local regularities, and whatever other elements of reality

play a role in getting things caused.

2. And it implies full rationality only in a loose, pragmatic sense: the decision-making
black box, for example, might in principle be implemented by a rather irrational mind, say,
one that consults an internet psychic who just happens to issue advice that conforms to the
economic ideal.



The representational apparatus of a model may take many forms. (Weis-
berg (2013) surveys some of the possibilities.) For simplicity’s sake, I will
think of models as consisting of symbols (sentences, equations, and so on)
with propositional contents that, by representing the target phenomenon’s
causal determiners, jointly entail something informative about the target
phenomenon itself. What is entailed will depend, of course, on the initial
conditions that are “fed into” the model, which will vary with the predictive
scenario.

The information provided about the target phenomenon, like the model it-
self, may take many forms. Some models are deterministic, entailing a specific
course of events. Some are stochastic, putting a probability distribution over
a range of possibilities. Some are inexact: rather than determining precise
probabilities for the possibilities, they ascribe something less well defined: an
interval probability (“between 85% and 100%, say), or a qualitative probability
(“fairly likely to occur”).

This variety in the form and functioning of causal models is matched by a
variety in the notion of prediction and, consequently, of predictive success.
Even supposing that we limit the discussion to predictions of discrete events,
many different kinds of tasks of which causal models are capable count as
“making a prediction”. A prediction might be a simple yes or no answer to the
question, “Will such and such an event occur?” (for example, will Truman
be elected president?). It might be the specification of a probability for such
an event. It might be the delineation of an interval during which an event
can be expected to occur (“There will be a storm some time between 3 PM
and 5 PM”), or it might be the specification of the probability of the event’s
occurring at least once during an interval, or it might be the number of times
that the event can be expected to occur during an interval (“Over the course
of a typical long, driving lifetime, you should have a total of three to four

accidents”).?

3. https://www.forbes.com/sites/moneybuilder/2011/07/27/how-many- times-will-you-


https://www.forbes.com/sites/moneybuilder/2011/07/27/how-many-times-will-you-crash-your-car/
https://www.forbes.com/sites/moneybuilder/2011/07/27/how-many-times-will-you-crash-your-car/

To allow for these many styles of prediction in an account of idealization
would make for a lengthy and involved paper, and would be rather tedious,
as no matters of great philosophical interest would arise. Let me therefore
restrict my attention to one particular kind of prediction, leaving it to the
reader to determine how the resulting treatment of predictive idealization
ought to be generalized.

I take as my canonical predictive assignment the task of answering a yes or
no question: will an event of a specified kind occur during a specified interval
of time? Will there be a storm tonight? Will there be a recession next year? If
such an event does occur (at least once) during the interval, say that the target
phenomenon occurred. One kind of model suitable for this sort of predictive
task is deterministic: it entails, given the relevant initial conditions, either
that the target phenomenon will or that it won’t occur. Typically, it does so by
entailing something more detailed. In the case of the weather, for example, a
model might forecast the occurrence of particular storms at particular times,
It is natural to declare that the model predicts the target phenomenon—that
it gives the answer “yes” to the predictive question—just in case it predicts at
least one storm during the specified interval. But it is not compulsory. Given
what we know about the weaknesses or the biases of the model, we might,
for example, ignore storms predicted on the interval’s cusp. Our predictive
interpretation of the model appeals if only tacitly, then, to a criterion that
turns the model’s forecast into a binary, yes/no answer, a criterion concerning
which we have some freedom of choice.

Alternatively, a predictive model may be probabilistic, putting a probability
distribution over storms at times. Here, too, we appeal at least tacitly to an
interpretive criterion to extract a simple “yes” or “no” from the information
supplied by the model. The plainest such criterion would say that the answer
to the storm question is “yes” just in case the probability distribution imposed

by the model, given the initial conditions, yields a probability equal to or
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greater than one-half that at least one storm occurs during the interval. Again,
however, other interpretive criteria might well be chosen on the basis of our
background knowledge about the model’s quirks.*

A prediction is a success if the model says “yes” and the target phenomenon
occurs, or if the model says “no” and the target phenomenon does not occur.
A good predictive model will generate successful predictions over a wide
range of relevant initial conditions. In this paper—again, seeking to simplify
where there is little of philosophical interest at stake—I assume that a range of
initial conditions is fixed in advance, asking only about the model’s predictive

power in scenarios contained within that range.

2.3 Towards a Safety Criterion

The purpose of this paper is to pose the question of safety for predictive
idealization in causal models: what kinds of idealization can be made without
degrading a causal model’s predictive power?

The question presupposes that the modeler has a certain predictive goal in
mind, since the safety of an idealization will vary with the nature of the goal.
It also presupposes that the modeler possesses information about the relevant
causal structure that is sufficient, at least in principle, for the building of a
model that is capable of some degree of success in attaining that goal (or else
the question simply does not arise). What the modeler needs to know is which
aspects of the known causal structure simply must be represented accurately
in any model that they set out to construct, and which can be omitted or
distorted.

The answer I provide will take the form of a criterion that ascertains the

safety of an idealization on the grounds of the ultimate determinants of safety,

4. We might also take into account practical matters such as the relative cost of false
positives and false negatives. That would, however, complicate the matter of measuring
the model’s success, adding desiderata above and beyond the very straightforward gauge of
success presented in the next paragraph.



that is, by drawing on those features of the situation that ultimately explain
why some idealizations are safe and some are not. Such a principle constitutes,
as it were, a philosophical theory of safety.

A principle of this sort might be used by the modeler as a method for
deciding which idealizations are safe. But in modeling, as in most other
endeavors, it is rarely sensible to base decisions on ultimate criteria; typically,
it is far more practical to consult some appropriate heuristic. Most modelers
seeking answers to questions about safety will find themselves in a situation
where various idealizations and their weak points are already well known.
An evolutionary biologist modeling gene change in a certain population,
for example, will have at their fingertips a range of modeling techniques,
some highly idealizing and some less so: models that assume infinitely large
populations and models that represent population size accurately; models
that assume non-overlapping generations and models that allow overlap;
models that build in population structure (e.g., the age of the organisms) with
various levels of detail; and so on. They will have some sense of which of
these models to use for which predictive questions about which biological
scenarios. It is this specialized knowledge that they rely on in putting together
their representations of the world; they never need contemplate, let alone put
into action, such a thing as a philosophical criterion for safety.

A modeler exploring virgin territory, with no prior knowledge to fall back
on, can always answer the safety question from first principles, using the kind
of philosophical criterion I attempt to formulate in this paper. But even then,
there are alternatives that might have practical advantages. The modeler might,
for example, simply proceed by trial and error, trying different combinations
of idealizations until they find the one that yields the most reliable predictions.

The vast majority of modelers may never make use of a philosophical
safety criterion. Such a thing is, however, of great interest to philosophers of
science, because it is what explains the modelers’ success: it spells out what

it takes for any given heuristic to be reliable—to be responsive in the right



way to the ultimate determinants of safety—and thus what it is for any given
application of a heuristic to deliver the correct answers for the right reasons.

A few further comments about the scope and limits of a philosophical
safety criterion. First, even in cases where a criterion for safety delivers clear
verdicts about what idealizations are feasible, this information might be out
of reach for working scientists, especially when modeling systems of great
causal complexity. The scientists may lack relevant heuristics. The task of
determining safety from first principles may be intractable. And they may
lack the computational resources to determine safety easily using trial and
error. Such difficulties ought not to be regarded as an objection to the safety
criterion in question; they are simply an illustration of the fact that science
can be quite hard to do.

Second, a safety criterion says and assumes nothing about the function
of idealization; that is, it says nothing about the reasons that you might want
to misrepresent a part of a causal process, the outcome of which you are
trying to predict. Because this paper is entirely concerned with the question
of safety, the question of function will be put to one side. It will be useful, all
the same, to articulate one well-known benefit of idealization, just to give a
little concreteness to the discussion that follows. I choose perhaps the most
uncontroversial example: sometimes we idealize in order to simplify a model,
thereby rendering the model easier to analyze or simulate and so making the
predictive task easier to accomplish. Ignoring weak forces, small correlations,
or minor irregularities can greatly speed calculation; indeed, in some cases,
such idealizations are necessary to make calculation tractable at all.

Third, a safety criterion can give only a necessary condition for the per-
missibility of an idealization, not a condition that is both necessary and
sufficient. That is because the advisability of making an idealization depends
on other considerations besides safety. We would not, for example, introduce
an idealization whose sole effect was to make a model more complicated—an

“infelicitous falsehood”,



Fourth, an idealization’s being unsafe ought not always to prevent its being
introduced into a model, as other considerations relevant to idealizing may be
in tension with safety, requiring a tradeoff. An unsafe idealization necessarily
reduces the predictive reliability of a model, but perhaps only a little. Might
we not tolerate, even welcome, a slight drop in accuracy for a sufficiently
large gain in simplicity, or some other benefit of idealization? We surely
would. Even so, in order to trade off intelligently, we must assess safety. The
interest of a criterion that reveals the ultimate grounds of safety is therefore

undiminished.

2.4 The Differencemaking/Idealization Thesis

As far as predictive accuracy is concerned—given the way I have set up the
predictive task in section 2.2—all that matters is whether a model says “yes”
or “no”. An idealization can be unsafe, then—it can detract from a model’s
accuracy—only by affecting the model’s answer to the binary question. A
causal model delivers this answer on the basis of its representation of the
causal process producing the target phenomenon. Some aspects of this “target
system” make a difference to whether or not the phenomenon occurs, while
some do not. These latter factors, the nondifferencemakers, are causal influ-
ences on the phenomenon, and typically affect the way in which the target
phenomenon is manifested—the exact timing of a storm, say, or the severity
of a recession—but they cannot themselves alter the course of events so that
the target phenomenon occurs rather than not occurring, or vice versa. Dif-
ferencemakers act, in effect, as on/off switches for the target phenomenon in
at least some circumstances, whereas nondifferencemakers act as knobs that
control the nature of the phenomenon when it does occur but cannot, under
any circumstances, divert the course of events so as to turn the phenomenon
off or on.

An idealization is a distortion of some element of causal reality. It seems,

then, that while distorting a differencemaking causal factor may affect a
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model’s predictive accuracy, distorting nondifferencemakers is safe: because
these factors play no role in determining whether or not a phenomenon
occurs, they can be deformed without affecting a model’s predictive power.
Or at least, this will hold true provided that we define differencemaking in an
appropriate way—a project with which the greater part of this paper will be
concerned.

My proposal, summing up the foregoing line of thought, is this: an ideal-
ization is safe just in case it distorts exclusively nondifferencemaking elements
of the causal process represented by the model. I will call this principle the
differencemaking/idealization thesis.

A few remarks about the thesis. The first is an objection. If two difference-
makers are distorted in compensating ways, the resulting model might, in spite
of its getting the differencemakers wrong, be a perfect predictor. Wouldn’t
idealizing the differencemakers in that case be safe? For that matter, a model
might completely misrepresent the differencemakers in the target system
yet be a perfect predictor because what it does represent is computationally
equivalent, as it were, to the actual system. What to say about that? I say that
“getting lucky”, though it is indisputably a route to success, is not a strategy
for success of any kind, and so a fortiori, not a strategy for idealization in
science. As we are in need of a strategy, we insist on getting the right answers,
as modelers say, for the right reasons. Only then are we truly “playing it safe”.

Second, as explained in section 2.1, we need a safety criterion that applies
not only to explicit idealizations but also to idealizations that are implicit in
black boxes. The differencemaking/idealization thesis looks to provide this:
it is safe to use a black box that implies a certain causal distortion (such as
the absence of certain irrational tendencies in human decision-makers) just
in case the distorted factor is not a differencemaker. The black box will then
specify behaviors that deviate from actual behaviors only in ways that make
no difference to the model’s predictions.

Third, in fleshing out the differencemaking/idealization thesis, there is

11



a choice to make: does it concern differencemaking in the actual causal
process, or in the causal process as represented (perhaps incompletely) by
the predictor’s current knowledge? I will settle ultimately for an epistemically
relative characterization.

Fourth, it is important to see that differencemakers and nondifference-
makers are often aspects of the very same properties or things. To take a
simple example, it may make a difference to whether or not a window shat-
ters that the brick that strikes it has a certain minimum velocity. But given
that the brick is indeed traveling fast enough, its exact velocity will likely
make no further difference to the breaking. Here we factor a single causal
element—the velocity—into two parts, an approximate value and an exact
value within the range allowed by that approximate value, and we discern that
one is differencemaking and the other is not. In so doing, we cut across the
system’s natural ontological joints to see what aspects of the causal process
are essential to the shattering. In a slogan: differencemakers are (usually) not
things, or even properties of things, but aspects of properties of things.

What, then, is differencemaking? There is more than one notion going
under that name in the philosophical literature. None is inherently right
or wrong, but one is far better than the others for the purpose of determin-
ing when an idealization threatens the accuracy of a predictive model. In
what follows, rather than attempting to survey every way of thinking about
differencemaking, I will consider two especially prominent approaches: a
counterfactually driven notion of differencemaking and a logically driven
notion, the latter based on my own theory of differencemaking in explanation.
It is the logical version of the differencemaking/idealization thesis, I argue,

that provides the correct account of safety.
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3. 'The Counterfactual Approach

3.1 Counterfactual Differencemaking

To characterize counterfactual differencemaking, let us take the via negativa.
An event can be said not to counterfactually depend on a certain aspect of
the causal process that brought it about just in case, had that aspect not been
present, the event would have occurred all the same. More generally, a kind of
event can be said not to counterfactually depend on a certain causal element
across a range of initial conditions just in case, for those conditions in which
an event of that kind would occur, were the element to be missing the event
would still occur, and the same mutatis mutandis for initial conditions in
which an event of that kind would not occur (that is: were the aspect missing,
the event would still not occur).

The counterfactual approach to differencemaking equates the lack of coun-
terfactual dependence with nondifferencemaking. The nondifferencemakers
are therefore those whose absence would change nothing with respect to the
occurrence of the target phenomena, no matter what the initial conditions. All
other causal elements are differencemakers. (Thus for my purposes, an event
counts as a differencemaker across a range of conditions even if, intuitively, it
makes a difference in only some of those conditions.)

On a counterfactual interpretation of the differencemaking/idealization
thesis, then, a causal element can be safely idealized for predictive purposes
only if, for every relevant set of initial conditions, were the element not present,
the fact of the target phenomenon’s occurrence or non-occurrence would
remain the same.

That sounds like a good first pass at a recipe for avoiding idealizations
that degrade a model’s predictive reliability. But it is only a first pass, as there
are two serious difficulties with the counterfactual approach. In many cases,
it yields unclear verdicts when applied to structural properties, as opposed

to discrete events. And in some circumstances, it gives bad advice about
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idealization, permitting idealizations that undercut predictive power.

3.2 First Problem: Unclear Verdicts

Let our predictive task be that of answering the question “Does sodium react
strongly with water?”” This is, of course, a simplified version of the more
subtle question “Under what circumstances, if any, does sodium react strongly
with water?”, which will be answered, as described above, by a model that
takes various scenarios—various sets of initial conditions—and predicts ei-
ther a strong reaction or not for each scenario. (As is typical in setting up
such questions, a somewhat artificial criterion will have to be laid down to
distinguish “strong” reactions from the rest.)

An exemplary nondifferencemaker for the reactivity question—the kind
of thing that can be idealized away without predictive harm—is the detailed
structure of the sodium nucleus. Certain facts about the nucleus, such as
its stability and its charge, are important, but the rest may be simplified or
otherwise ignored by a model whose sole purpose is to predict reactivity.
Can the counterfactual approach to differencemaking, channeled through
the differencemaking/idealization thesis, replicate this judgment?

To apply the counterfactual approach we must, for any given set of initial
conditions, answer the question: Would the sodium sample react strongly
with the water if such and such details of the structure of the nucleus were
different? Using the possible-worlds semantics for evaluating counterfactual
conditionals, that means finding the closest worlds where the nuclear structure
is different, and noting whether there is a strong reaction between the sodium
and the water in such worlds.

The closest worlds will be those, roughly speaking, in which the nuclear
structure is as similar as possible to the actual nuclear structure (though of

course different with respect to the aspect whose differencemaking status is

5. T used the same example to explore the deficiencies of a counterfactual approach to
differencemaking for explanatory purposes in Strevens (2008), chap. 3.
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under consideration), while at the same time having as few ramifications as
possible for everything else. A moment of reflection should convince you
that it is not easy to say what these worlds are like. Do they have subtly
different versions of quantum chromodynamics? But even subtle differences
might, if they were significant enough to change the nuclear structure, have
dramatic consequences for the behavior of sodium. The sodium atom might
not be stable enough to get anywhere near the water. So would sodium
be reactive in such worlds? We want to say yes, in order to vindicate the
intuitive verdict about the detailed structure’s not being a differencemaker for
reactivity. Instead, we draw a blank. This suggests that our judgments about
differencemaking are not based on the kinds of considerations that determine
the truth values of counterfactual conditionals at all.

Here, however, it is important to recall that my goal is to find what I have
called a philosophical criterion for safety: a principle that specifies those
factors upon which the safety of an idealization ultimately depends. Such a
rule need not be one that is applied on a day-to-day basis by working scientists,
or indeed, by working philosophers. In the case at hand, modelers need not
make their decisions about the safety of idealizing the sodium nucleus by
calculating the similarity of possible worlds. They may be using a suite of
heuristics that go by some different route, but nevertheless arrive reliably
and for systematic reasons at the destination specified by the counterfactual
version of the differencemaking/idealization thesis.

The difficulty with the counterfactual version is not that it is hard for
ordinary scientists to apply, but that there is reason to think that no matter
how expertly it is applied, it will fail to yield the right answer to the question
about the nuclear structure’s differencemaking status. I say this because it
seems quite plausible either that there is no fact of the matter about which
worlds are closest, or that in at least some of the closest worlds, chemistry
works sufficiently differently that sodium does not react strongly with water.

Either way, the counterfactual criterion will answer our question incorrectly:
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it will fail to classify the details of nuclear structure as nondifferencemaking.

Let me now turn to an aspect of the sodium atom that clearly does make a
difference to sodium’s propensity to react with water: its single, loosely bound
outer electron. For the counterfactual criterion to render the correct verdict
about the electron, it must be the case that in some chemical scenarios at
least, were the electron not loosely bound, sodium would not react strongly
with water. Again we face great perplexity in determining the relevant closest
worlds. Are they worlds in which sodium has a single tightly bound outer
electron? What laws of nature differ, such that the binding is so strong, and
what are the implications for everything else? Or maybe the closest worlds
are those where sodium’s outer shell has several electrons. But what would
bring that eventuality about? Could we identify atoms of this sort as sodium?

There is surely a real prospect—though we are all, in these matters, groping
in the dark—that there is no fact as to which worlds are closest. In that case,
there is no determinate truth value to the crucial counterfactual, thus no
determinate fact about differencemaking. But the loosely bound electron
obviously makes a difference to reactivity! The counterfactual criterion is
making absurdly heavy weather of what should be a relatively straightforward
chemical judgment.

Perhaps the problem lies not with the counterfactual criterion for dif-
ferencemaking, but with the possible-worlds semantics for counterfactual
conditionals? Provided that the conditionals in question are those of ordi-
nary language, I think not. The kinds of questions that the possible-worlds
semantics forces on us—what would the world be like if sodium’s structure
were different in various ways?—are questions that are genuinely relevant
to evaluating the ordinary-language conditionals in question. Even if the
possible-worlds semantics is not correct, it is quite right in implying that valid
counterfactual reasoning about tweaks to the structure of sodium requires the
spinning out of an array of alternatives to the actual world’s physics. Whatever

is the correct story about ordinary counterfactual conditionals, then, will
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run into many of the same difficulties as the possible-worlds interpretation,
if forced to deliver judgments about the differencemaking status of various
aspects of atomic structure.

An alternative is to interpret the differencemaking/idealization thesis
using counterfactual conditionals of a more technical sort, such as the model-
relative counterfactuals of certain interventionist characterizations of causality
(Galles and Pearl 1998). These, it seems, by confining their pronouncements
to facts that are implicit in a well-specified model, rather than setting out to
explore the space of possible worlds, in large part avoid setting themselves the
daunting task of assessing the global implications of counterfactual tweaks.
They might indeed provide determinate, correct answers to my questions
about differencemaking in the sodium atom; at least, I won't try to argue
otherwise. At the end of section |4, however, I will advance a reason to think
that even if these conditionals, or any others like them, supply the right
answers to questions about the safety of various idealizations, they fail to
identify the ultimate determinants of safety. Thus, they fall short of providing
a philosophical theory of safety.

3.3 Second Problem: Bad Advice about Idealization

Take some aspect of a causal process that is judged by the counterfactual
criterion to be a nondifferencemaker for the target phenomenon. According
to the differencemaking/idealization thesis, such a feature can be idealized
without compromising a model’s predictive reliability. That, however, is faulty
advice.

What’s guaranteed by the feature’s having “passed” the test for nondiffer-
encemaking is that its removal, as carried out in the relevant closest possible
worlds, will have no effect on the occurrence of the target phenomenon. What
makes a world close is that such a removal is accomplished discreetly—with a
minimum of fuss, as it were. That a feature is a nondifferencemaker in the

counterfactual sense tells us, then, that certain relatively small changes are
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predictively safe, but that is all; the predictive upshot of more radical changes
is untested.

Many idealizations, however, are huge departures from actuality, almost
to the point of absurdity. In the ideal gas model, we represent infinitely small
molecules; in population genetics, infinitely large populations; in microeco-
nomics, ideally rational economic actors. Examining counterfactual removals
will tell us little or nothing about the impact of such extreme distortions.

In short: the deliverances of the counterfactual criterion hinge on the
consequences of the most conservative transformations, whereas when ide-
alizing we want to know about the consequences of any transformation, no
matter how profound. The previous objection showed how challenging it is
to distinguish the most conservative transformations from the rest. Making
that distinction now turns out to be unnecessary, even counterproductive.

What if the counterfactual criterion is amended to take into account the
specifics of the proposed idealization? So rather than asking (for example)
“What if the molecules were not that particular size?” we ask “What if the
molecules were infinitely small?”. That guarantees that the idealization we're
envisaging will hold in the possible worlds used to evaluate the conditional.
(Never mind that it means we have to propose idealizations before we have
distinguished what it is safe to idealize.)

The answer to such a question still won't give us reliable advice on ide-
alizations, however. It will tell us what will happen in the closest possible
worlds where the idealization holds, but the causal structure specified by
the idealized model might differ in crucial ways from the causal structure
of such worlds. It might be, for example, that the most conservative way to
idealize a nondifferencemaker is to alter in addition certain differencemaking
aspects of the relevant causal process (which changes presumably ameliorate
the most radical side effects of the proposed idealization). The closest worlds

we are consulting to settle questions about differencemaking will then differ
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in crucial ways from our model.®

Counterfactual conditionals are good for many things in philosophy. (I've
used them myself to define the explanatorily important relation of entangle-
ment.)” They may even articulate a philosophically useful notion of difference-
making (although my argument shows that such a notion would be rather
limited, going indeterminate for many questions of great scientific interest).
But they are not the tool needed to put the differencemaking/idealization
thesis to work. Perhaps an alternative criterion for differencemaking can do

better.

4. The Logical Approach

The logical approach to differencemaking presented in what follows is derived
from the “kairetic” conception of differencemaking that I have developed
in other work to diagnose causal-explanatory relevance. Unlike kairetic dif-
ferencemaking (and indeed counterfactual differencemaking), logical differ-
encemaking is epistemically relativized: what makes a difference to what, in
the logical sense, depends on what a scientist knows about a causal process,
or more formally, is indexed to an epistemic situation. I will say something
further about the connections between the two notions of differencemaking
in section 5.

To determine a phenomenon’s logical differencemakers for a specified
range of scenarios and a given scientist, begin with an accurate representa-
tion of everything the scientist knows about the causal production of the

phenomenon in those scenarios. This representation provides a basis for

6. You could, of course, nail down everything that matters in the counterfactual antecedent,
in effect pinpointing explicitly the closest world you wish to examine. But at that stage, you
are evaluating a counterfactual conditional only in the most nominal sense, since you are
merely examining the logical consequences of your minutely specified antecedent. What
you have is in fact a cumbersome variant of the logical notion of differencemaking to be
presented in the next section.

7. In Strevens (2008), Strevens (2012), and Strevens (2014).
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predictions that are as good as anyone in the scientist’s epistemic situation
can reasonably expect to make on the grounds of causal information alone.

Indeed, with one small amendment, the representation can be regarded
as itself constituting a predictive causal model for the phenomenon. The
amendment is the addition of what I call a causal totality statement, which
specifies that there are no further causally relevant facts. In some cases, the
totality statement is known to be true; then, of course, it is already present. In
other cases, the scientist may strongly suspect that it is false. It must be inserted
into the model all the same. It mimics, in effect, the scientist’s intention to
issue predictions in spite of the incompleteness of their knowledge.

With the totality assumption in place, the representation of the scientist’s
knowledge acquires the predictive capacity of a causal model: add a set of
initial conditions to the representation, and insofar as you can derive anything
determinate about the occurrence of the target phenomenon, you have a
prediction—the best prediction, as I have said, that the scientist could in
principle make on the grounds of what they currently know. I call this the
epistemically maximal model for the scientist in question. By assumption, the
scientist is ready to build a useful predictive model (or the question of safety
simply doesn't arise), so I take it that the epistemically maximal model has
considerable predictive power.

Although the epistemically maximal model is derived from the scientist’s
epistemic state, it is not their model. It is a philosopher’s construction, a part
of a philosophical theory of what makes a predictive idealization safe. The
scientist has yet to build their model. Their access to the maximal model
may in fact be rather limited. They might not “know what they know”—
for example, they might be highly confident about the existence of some
causal feature that is not in fact present. They take this to be a part of their
knowledge, but it is not. Or even if they have a good grasp of what constitutes
their knowledge, they might lack the means to extract a prediction, if that

knowledge is complex. The problem of determining what their knowledge
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implies might be, for them, intractable.

The point of starting with the epistemically maximal model is not to set
out a method for the scientist to follow but to articulate what I have called
a philosophical criterion for determining safety—that is, a principle that
pinpoints what the scientist, given the epistemic foundations upon which they
hope to build their causal model, can safely idealize. It may not be easy for
them to learn these facts about safety, and as I have remarked above, when they
succeed it will typically be by using some heuristic, not by the first-principles
approach that invokes the notion of logical differencemaking defined in this
section. But the value of their efforts must ultimately be judged against the
definition.

On with the characterization of logical differencemaking, then. Having
assembled the epistemically maximal model, the next step is to see what can
be deleted from the model without affecting its predictions, that is, without
changing the answers it gives about the occurrence of the target phenomenon,
“yes” or “no’, for any of the sets of initial conditions within the model’s intended
range of use. “Deletion” here means literally that: simply removing informa-
tion from the model, so that it says strictly less about the causal process in
question than it did before the removal. A deletion might omit mention of
some causal factor altogether; the model then becomes agnostic as to the
presence of that factor.® Or it might make a description of a property less
specific—replacing an exact velocity for a hurled brick, for example, with a
range of velocities spanning the exact value. The model now says less about
the brick’s velocity than it did before.

Even more ambitiously, a deletion might replace a model’s specification
of the states of a large number of individual entities with a statistical profile
of the same states. Done right, this “statisticalization” leaves you with strictly

less information about the causal process in question. The removal procedure,

8. Unless the factor is entailed by other elements of the model, as might be the case if it is
an intermediate stage in a process whose causal precursors remain spelled out in the model.
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as I have described it, is essentially one of abstraction. A causal model is made
more abstract by replacing some sentence or equation in the model, or some
set of sentences or equations, with other representations that (a) are entailed
by the originals, and (b) concern the same subject matter, or a subset thereof.

The idea behind logical differencemaking, roughly, is this: if the descrip-
tion of some aspect of the causal process can be removed from the model
without affecting any of the model’s predictions over the relevant range of
initial conditions, that aspect is a nondifferencemaker for the target phe-
nomenon. Otherwise, it is a differencemaker. Two further conditions must
be added, however, before this characterization is ready for action.

First, the deletion must not be so severe that what’s left is no longer a causal
model. You could maximize information removal by replacing everything
in the model with a lookup table relating initial conditions to the yes or no
answers given by the original model, without predictive loss. Such a table
might be useful in certain circumstances, but it is not a representation of the
causal process producing the target phenomenon, hence not a causal model
(or indeed, any kind of model).

Second, and more subtly, the model, like any predictive causal model,
must have some unity or cohesion. The internal workings of the model could
in principle be replaced with a binary disjunction, in which the original
workings constitute one disjunct and some other causal process with the same
consequences constitutes the other. But that would yield what is intuitively a
disjunction of causal models, describing two different kinds of processes, not
a single model.

The rationale for these qualifications lies outside the scope of this paper,
but it is not too difficult to discern: we want to build on our causal knowledge.
If we were finished with scientific inquiry and cared only about prediction,
the lookup table would suffice for all our needs, as would an appropriately
formulated disjunction of models. In our usual, limited epistemic situation,

we value discrete causal representations because we imagine that we will
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amend, improve, adapt, and analogize them in the service of further scientific
achievements. The same standards should be applied to the maximal model.

To determine logical differencemaking, then, abstract the epistemically
maximal model as far as possible without violating the requirements enumer-
ated above: that the model continue to yield the same predictions and that it
continue to constitute a cohesive causal model. At that point, everything that
has been removed is declared to be a logical nondifferencemaker; only logical
differencemakers remain.”

Logical differencemaking can equally well be defined without using the
procedural idiom: a factor is a logical non-differencemaker just in case there
exists some abstraction of the epistemically maximal model that is itself
a cohesive causal model of identical predictive portent and in which that
factor does not appear. This static formulation is less vivid, but it makes it
quite clear that the facts about logical differencemaking relative to a body
of knowledge are fixed by the logical consequence relation and the criterion
for being a cohesive causal model—and thus that they do not depend on the
counterfactual labors of some epistemically maximal modeler.

To complete the story, I invoke the differencemaking/idealization the-
sis: the aspects of causal structure that our scientist may safely idealize are
the logical nondifferencemakers. In other words, the accurate information
that has been removed from the model can safely be replaced by intentional
misrepresentations. The only constraint is that these misrepresentations, the

idealizations, must be logically consistent with the differencemakers."® If we

9. For technical reasons related to note |8, a more careful presentation of the logical
approach to differencemaking will represent causal structure not using a single causal model
but using a set of such models representing different but overlapping segments of the entire
known causal structure. A factor is a nondifferencemaker in the logical sense if it can be
removed from all such models without changing the model’s predictions (Strevens 2008). I
suppress this additional layer of complexity in the main text.

10. The reason that such idealizations are safe, in the most schematic terms, is this. The
abstracted model, containing only logical differencemakers, supplies all the information in
the scientist’s knowledge base relevant to the predictive task. Adding anything further to
the model cannot usefully supplement the information, then. But nor can it subtract from
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were able, in the process of abstracting a model of a gas, to replace an exact
value for molecular size with a range of values, then we can idealize by speci-
tying any other value for molecular size that lies within that range—perhaps
zero. If we were able, in the process of abstracting a model of a population of
organisms, to remove any information as to whether generations overlapped
or not, then we can idealize by specifying non-overlapping generations. And
so on.

The logical differencemakers, by contrast—the elements of the causal
structure that remain after the abstraction procedure described above—must
be faithfully represented in a predictive model, if it is to fully realize the
predictive potential of the scientist’s causal knowledge.

Let me return to the question of sodium’s reactivity, to see how the logical
approach to differencemaking handles the case. We begin with a model of
reactivity that presumably predicts a strong reaction with water. We ask: what
can be expunged? Subtract details of the sodium atom’s nuclear structure,
and the model continues to predict reactivity, provided that you leave behind
enough information to entail the nucleus’s charge and the stability of the
atom.'! Subtract information about the outer electron, however—either its
existence or the weakness of the bond holding it to the nucleus—and your
model will no longer say much that is determinate about sodium’s reaction
with water. Thus, the details of nuclear structure are nondifferencemakers
while the facts about the outer electron are differencemakers. Idealize the
former—representing the nucleus as a point charge, say—but leave the latter
alone, and you will have a simplified model of sodium that is still a good

predictor for the purpose at hand.

its predictive usefulness. That is because the abstracted model supplies the information by
deductively entailing it, and deductive logic is monotonic. (When the model is stochastic,
what is entailed is a probability, which is then interpreted as a yes or no answer.) Adding
something to the model, even something false, therefore cannot undo the entailment.

11. Take away enough information, and the representation of the nucleus becomes some-
thing approaching a black box. It is up to the scientist to decide whether a black-boxed model
is sufficiently cohesive and unified for their predictive purposes.
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Characteristically, we do not make these judgments by scrupulously fol-
lowing the recipe laid out above, starting with an epistemically maximal model
for sodium’s behavior, and so forth. The maximal model, which for us today
would include all of the relevant quantum chemistry, is too complex to easily
manipulate (indeed, it is very difficult to manipulate at all). But we have our
heuristics. We can see from the overall form of the dependences involved
that nuclear structure won’t matter much, and that the outer electron is doing
a lot of work, even if we can’t carry out the calculations that would provide
a rigorous proof. Our heuristics show us what will and won't be a logical
differencemaker, without our having to crank through the definition of logical
differencemaking.

That logical differencemaking is relative to a knowledge situation, and
invokes a causal totality statement that might well be false, raises the following
concern: a causal factor might count as a nondifferencemaker in the context of
a scientist’s current knowledge, but as a differencemaker once more is known.
Suppose, for example, that the scientist knows of a mechanism by which a
factor X has only a slight effect on the relevant course of events, not serious
enough to affect the epistemically maximal model’s predictions. X will qualify
as a nondifferencemaker for the predictive task. But there might be some
other, unknown mechanism by way of which X has a considerable impact
on the occurrence of the target phenomenon. Were this mechanism known,
X would certainly qualify as a differencemaker. Yet the differencemaking/
idealization thesis, interpreted as I have proposed here, will tell us that the
predictive model can safely be idealized with respect to X—that, for example,
the scientist can safely assume, in the predictive model, that X is absent or
altogether causally unconnected to the target phenomenon.

Is that good advice? In fact, it is. Given what the scientist knows, and
is therefore capable of including in their predictive model, X can indeed be
distorted or ignored. For now, it is safe to idealize X. When more becomes

known, it will become unsafe to idealize X. The logical approach delivers
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these verdicts, and they are, even if disconcerting, correct.

For various reasons, a scientist might choose, when building a predictive
model, to ignore some of their knowledge of the underlying causal structure.
Including every known facet of the structure might, for example, simply
overwhelm the scientist’s computational capacities; to get any prediction at
all, then, they must pick and choose what they take to be adequate predictors,
knowing that their model will fall short in certain ways.

What may be safely idealized in such a model? The logical difference-
making approach supplies an answer. To assess safety, begin not with all the
scientist’s causal knowledge, but with that subset of their knowledge that they
propose to use to build their model. Add a causal totality statement (known,
in this case, to be false). Apply the abstraction procedure to determine differ-
encemakers and nondifferencemakers relative to the knowledge subset. It is
safe to idealize any of the nondifferencemakers.

Of course it may be that some of these nondifferencemakers qualify as
differencemakers relative to the scientist’s total knowledge (in the same way
that some nondifferencemakers relative to their total knowledge will be differ-
encemakers relative to more inclusive sets of information still). In following
my advice, the scientist may therefore be idealizing a factor that they know
to be a differencemaker (or to put it more carefully, a factor that is, from the
perspective of their entire knowledge, a differencemaker). Such factors may
nevertheless be idealized safely, for the same reason given in the reply to the
objection above: because of the limitations on what goes into the predictive
model, there is nothing in the model by way of which the idealization can
affect the predictions in question.

A rather different way for a scientist to ignore some of their causal knowl-
edge is to black-box certain parts of the target system. Strictly speaking, a
black box does not represent any aspect of underlying causal structure and so
cannot distort that structure. As I noted in section 2.1, however, some black

boxes are widely understood to imply distortions; a black box that replicates
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the decision-making of the perfectly rational Homo economicus, for example,
is often taken to idealize human decision-making by supposing, falsely, that
humans are perfectly rational.

In section 2.4, I suggested that such idealizations are safe just in case
the distorted factors are not differencemakers. Let me make good on this
proposal by showing how the logical approach to differencemaking handles
black boxes.

Suppose that our scientist has declared their intent to black-box certain
subsystems or processes; they may know something about the causal structure
of these subsystems, but they will omit what they know from their predictive
model, substituting a bare function relating inputs to outputs—the black box
itself.

To provide a safety criterion for such a model, amend the logical crite-
rion for differencemaking as follows. Begin, as before, with an epistemically
maximal model, representing all the scientist’s relevant knowledge. Then
black-box the model in accordance with the scientist’s intentions, replacing
any knowledge of the structures to be black-boxed with a bare input/output
function.

The usual abstraction procedure can now be applied to this black-boxed
model. (The details are discussed further in Strevens (2016).) Suppose, by way
of illustration, that a black box in the model is “deterministic”, supplying a
single determinate output for every input. The precise value of the output may
not matter for predictive purposes; it may be enough to know an approximate
value. In the course of abstraction, the black box will be switched out for a
more abstract black box, saying strictly less about what output results from
any given input. When abstraction is done—when all possible such substitu-
tions have been made—you have in place of your black boxes what might be
regarded as black box templates. Any way of filling out those templates will
yield the same predictions. The templates may safely be replaced, then, with

determinate input/output functions that fit the template but are known to be
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inaccurate—black boxes whose description of the relation between inputs
and outputs is at best only approximately correct.

Some such replacements, like the black box that represents the conse-
quences of perfectly rational decision-making, may imply distortions of causal
structure. These black-box idealizations are the safe ones.

Finally, I can make good on my claim in the previous section that there is
something objectionable about combining the differencemaking/idealization
thesis with a counterfactual criterion for differencemaking, no matter what fla-
vor of counterfactual conditional is employed. By a counterfactual approach
to differencemaking, I mean one that, in order to determine whether a causal
factor makes a difference, examines—by way of possible worlds, intervention-
ist causal models, or some other structure—the consequences of possible but
non-actual alternatives to that factor. In the case of sodium, for example, a
counterfactual test of any stripe will ask us to flesh out a coherent story in
which the sodium atom has one or more counterfactual structures, or operates
according to one or more counterfactual principles.

The effectiveness of the logical approach to differencemaking as a test for
safety shows not only that the consideration of such alternative structures and
principles is unnecessary to determining safety, but that safety does not in
the end depend at all on the behavior of these alternatives. It depends only
on the question of which parts of the epistemically maximal model are doing
the work of entailing the information used to make predictions. Even if a
counterfactual test delivers the right advice about safety, then, were it to be
considered as a philosophical criterion for safety—a principle that spells out
what ultimately makes an idealization safe or unsafe—it would falsely imply
the importance of things that are in fact explanatorily irrelevant to safety. If

any such tests exist, they can be regarded only as useful heuristics.
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5. Idealization and Differencemaking in Prediction and Explanation

Scientific explanation, most contemporary philosophers agree, makes use
of a notion of causal relevance, choosing certain causal factors—conditions,
structures, regularities, and laws—as explainers of a phenomenon because
they are causally relevant to that phenomenon in a certain way. Prediction
using causal models also invokes a standard of causal relevance, I have argued
in this paper, to discriminate between causal factors that can and cannot be
safely idealized.

The relevant factors in explanation are those that really matter for explana-
tory purposes. The relevant factors in prediction are those that really matter
for predictive purposes. There is no obvious reason why these two forms
of relevance should not come apart. There are many coherent philosophi-
cal notions of causal relevance in the literature, some built around the idea
of differencemaking and some not, appealing to statistics, counterfactuals,
nomological relevance, or—like mine—simple logic. It is surely to be expected
that the notion required by explainers will differ in some respects from the
notion required by predictors.

But in fact, the approach to relevance that works for prediction is strikingly
similar to the account of differencemaking that determines—if my work on
the topic is correct—explanatory relevance.

Hempel (1965, §2.4) has frequently been criticized for asserting a sym-
metry between prediction and explanation. He was indeed wrong to leave
causation out of the picture. The barometer’s needle drop does not explain
the storm, and the length of the flagpole’s shadow does not explain the pole’s
height, however predictive they may be. But a certain, carefully circumscribed
version of Hempel’s thesis looks like it might be correct: the factors that matter
for explanation are precisely those that matter for causal prediction. That
is, an aspect of the causal process producing a phenomenon plays a part in
explaining that phenomenon just in case it plays an essential part in predicting

that phenomenon on causal grounds.
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The logical approach developed in this paper is not, on close examination,
strictly identical to the kairetic criterion for explanatory relevance. Let me
examine the two principal differences between the predictive and explanatory
criteria, showing that they are philosophically insignificant; I will thereby
preserve the unexpected Hempelian moral of my story.

The first difference is that differencemaking for the purposes of predic-
tion is relative to the criterion for deciding whether a predictive model says
“yes” or “no”. Suppose that we are working with a model that, for any set of
initial conditions, ascribes a precise probability to the target phenomenon. A
standard yes/no criterion would deliver a “yes” just in case that probability is
equal to or greater than one-half. A factor that increases the probability only
when it is already over one-half, then, is not a predictive differencemaker:
with or without that factor, the model will deliver the same yes/no answers.
But on many accounts of probabilistic explanation, including my own, it is an
explanatory differencemaker.

This divergence between prediction and explanation is rather superficial,
however: it is an artifact of the demand for binary answers, rather than a
feature inherent to the art and craft of prediction. In most real-world contexts,
a predictive modeler will take account of the magnitude of the probability
ascribed to the target phenomenon; they will take account, then, of probability-
raisers (and they will be reluctant to idealize them away).

The second difference between predictive and explanatory differencemak-
ing is that the predictive sort but not the explanatory sort is relative to a
modeler’s epistemic situation. In the explanatory case, a nondifferencemaker
is something that can be removed from a model representing the complete
truth about the causal production of the target phenomenon without changing
the probability ascribed to the target phenomenon.'? In the predictive case,

a nondifferencemaker is something that can be removed from a model that

12. 'This and subsequent formulations of differencemaking are simplifications adopted for
clarity’s sake, along the lines remarked in note 9.
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summarizes the predictor’s current causal knowledge without changing that
probability. As I observed earlier, some nondifferencemakers in the predictive
sense will be differencemakers in the explanatory sense, namely, those that
affect the probability by way of a causal pathway that is as yet unknown.

Again, though, this difference between predictive and explanatory dif-
ferencemaking is not as deep as it may first appear. There is nothing to
distinguish explanatory differencemaking and predictive differencemaking
for a predictor who knows everything about the structure of the causal system
whose behavior they seek to predict or explain. To a causally fully informed
scientist, in other words, explanatory and predictive causal differencemaking,
and therefore relevance, are identical. That is not Hempel’s symmetry thesis,
but it has much of its character. The grand old philosopher of science was
onto something after all.

To conclude, a few words on the purpose of idealization. I have already
sketched one such function: to simplify models in order to make them eas-
ier to use. Potochnik (2017) has suggested that idealizations can assist in
the efficient representation of causal patterns; Bokulich (2016) says the same
about the representation of patterns of counterfactual dependence, among
other things. Finally, in my own work on explanatory idealization (Strevens
2008, chap. 8), I have proposed that ostentatiously fictitious idealizations
communicate forcefully to a model’s consumers—other scientists—that cer-
tain causal elements that might well have been thought to play a decisive
role in determining the occurrence of the target phenomenon are in fact
nondifferencemakers.

These writers are primarily concerned with explanation, but the very same
functions may be performed, in each case, by predictive idealizations. More
generally, I suggest that idealization will play parallel roles in the predictive
and the explanatory enterprises. There may be some divergence in idealizing
taste—a predictive modeler may be more interested in idealizations that make

a model easier to use, while an explanatory modeler may be more interested
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in idealizations that make a model easier to comprehend, insofar as those
two qualities come apart—but presumably this will be at most a difference in
degree.

In any case, no matter what the function or functions of idealization, the
question of safety will arise. (An unsafe explanatory idealization weakens an
explanation by removing explanatorily relevant information.) And the crite-
rion for safety to which an idealizer must ultimately conform, whether they are
explaining or predicting, will turn on the the facts about differencemaking—
with differencemaking interpreted not by way of a counterfactual criterion

but in accordance with the logical approach.
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